Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2023
-
Free, publicly-accessible full text available March 1, 2023
-
Context. Protoplanetary disks in dense, massive star-forming regions are strongly affected by their environment. How this environmental impact changes over time is an important constraint on disk evolution and external photoevaporation models. Aims. We characterize the dust emission from 179 disks in the core of the young (0.5 Myr) NGC 2024 cluster. By studying how the disk mass varies within the cluster, and comparing these disks to those in other regions, we aim to determine how external photoevaporation influences disk properties over time. Methods. Using the Atacama Large Millimeter/submillimeter Array, a 2.9′× 2.9′ mosaic centered on NGC 2024 FIR 3more »
-
Abstract Cosmogenic radio-nuclei are an important source of background for low-energy neutrino experiments. In Borexino, cosmogenic $$^{11}$$ 11 C decays outnumber solar pep and CNO neutrino events by about ten to one. In order to extract the flux of these two neutrino species, a highly efficient identification of this background is mandatory. We present here the details of the most consolidated strategy, used throughout Borexino solar neutrino measurements. It hinges upon finding the space-time correlations between $$^{11}$$ 11 C decays, the preceding parent muons and the accompanying neutrons. This article describes the working principles and evaluates the performance of thismore »Free, publicly-accessible full text available December 1, 2022
-
Free, publicly-accessible full text available January 1, 2023