Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This study employs Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations to investigate interactions between water molecules and Poly(Nisopropylacrylamide) (PNIPAM). DFT reveals preferential water binding sites, with enhanced binding energy observed in the linker zone. Quantum Theory of Atoms in Molecules (QTAIM) and electron localization function (ELF) analyses highlight the roles of hydrogen bonding and steric hindrance. MD simulations unveil temperature-dependent hydration dynamics, with structural transitions marked by changes in the radius of gyration (Rg) and the radial distribution function (RDF), aligning with DFT findings. Our work goes beyond prior studies by combining a DFT, QTAIM and MD simulations approach across different PNIPAM monomer-to-30mer structures. It introduces a systematic quantification of pseudo-saturation thresholds and explores water clustering dynamics with structural specificity, which have not been previously reported in the literature. These novel insights establish a more complete molecular-level picture of PNIPAM hydration behavior and temperature responsiveness, emphasizing the importance of amide hydrogen and carbonyl oxygen sites in hydrogen bonding, which weakens above the lower critical solution temperature (LCST), resulting in increased hydrophobicity and paving the way for understanding water sorption mechanisms, offering guidance for future applications such as dehumidification and atmospheric water harvesting.more » « lessFree, publicly-accessible full text available May 26, 2026
-
null (Ed.)We report a partial elucidation of the relationship between polymer polarity and ionic conductivity in polymer electrolyte mixtures comprising a homologous series of nine poly(vinyl ether)s (PVEs) and lithium bis(trifluoromethylsulfonyl)imide. Recent simulation studies have suggested that low dielectric polymer hosts with glass transition temperatures far below ambient conditions are expected to have ionic conductivity limited by salt solubility and dissociation. In contrast, high dielectric hosts are expected to have the potential for high ion solubility but slow segmental dynamics due to strong polymer–polymer and polymer–ion interactions. We report results for PVEs in the low polarity regime with dielectric constants of about 1.3 to 9.0. Ionic conductivity measured for the PVE and salt mixtures ranged from about 10–10 to 10–3 S/cm. In agreement with the predictions from computer simulations, the ionic conductivity increased with dielectric constant and plateaued as the dielectric approached 9.0, comparable to the dielectric constant of the widely used poly(ethylene oxide).more » « less
-
OBJECTIVETo characterize high type 1 diabetes (T1D) genetic risk in a population where type 2 diabetes (T2D) predominates. RESEARCH DESIGN AND METHODSCharacteristics typically associated with T1D were assessed in 109,594 Million Veteran Program participants with adult-onset diabetes, 2011–2021, who had T1D genetic risk scores (GRS) defined as low (0 to <45%), medium (45 to <90%), high (90 to <95%), or highest (≥95%). RESULTST1D characteristics increased progressively with higher genetic risk (P < 0.001 for trend). A GRS ≥ 90% was more common with diabetes diagnoses before age 40 years, but 95% of those participants were diagnosed at age ≥40 years, and they resembled T2D in mean age (64.3 years) and BMI (32.3 kg/m2). Compared with the low risk group, the highest-risk group was more likely to have diabetic ketoacidosis (low 0.9% vs. highest GRS 3.7%), hypoglycemia prompting emergency visits (3.7% vs. 5.8%), outpatient plasma glucose <50 mg/dL (7.5% vs. 13.4%), a shorter median time to start insulin (3.5 vs. 1.4 years), use of a T1D diagnostic code (16.3% vs. 28.1%), low C-peptide levels if tested (1.8% vs. 32.4%), and glutamic acid decarboxylase antibodies (6.9% vs. 45.2%), all P < 0.001. CONCLUSIONSCharacteristics associated with T1D were increased with higher genetic risk, and especially with the top 10% of risk. However, the age and BMI of those participants resemble people with T2D, and a substantial proportion did not have diagnostic testing or use of T1D diagnostic codes. T1D genetic screening could be used to aid identification of adult-onset T1D in settings in which T2D predominates.more » « less
An official website of the United States government
