APOL1 Risk Variants, Acute Kidney Injury, and Death in Participants With African Ancestry Hospitalized With COVID-19 From the Million Veteran Program
- PAR ID:
- 10340236
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- JAMA Internal Medicine
- Volume:
- 182
- Issue:
- 4
- ISSN:
- 2168-6106
- Page Range / eLocation ID:
- 386
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We demonstrate a-axis YBa2Cu3O7−x/PrBa2Cu3O7−x/YBa2Cu3O7−x trilayers grown on (100) LaAlO3 substrates with improved interface smoothness. The trilayers are synthesized by ozone-assisted molecular-beam epitaxy. The thickness of the PrBa2Cu3O7−x layer is held constant at 8 nm, and the thickness of the YBa2Cu3O7−x layers is varied from 24 nm to 100 nm. X-ray diffraction measurements show all trilayers to have >97% a-axis content. The rms roughness of the thinnest trilayer is <0.7 nm, and this roughness increases with the thickness of the YBa2Cu3O7−x layers. The thickness of the YBa2Cu3O7−x layers also affects the transport properties: while all samples exhibit an onset of the superconducting transition at and above 85 K, the thinner samples show wider transition widths, ΔTc. High-resolution scanning transmission electron microscopy reveals coherent and chemically sharp interfaces and that growth begins with a cubic (Y,Ba)CuO3−x perovskite phase that transforms into a-axis oriented YBa2Cu3O7−x as the substrate temperature is ramped up.more » « less
-
Three-Dimensional Ultrastructure of Arabidopsis Cotyledons Infected with Colletotrichum higginsianumWe used serial block-face scanning electron microscopy (SBF-SEM) to study the host–pathogen interface between Arabidopsis cotyledons and the hemibiotrophic fungus Colletotrichum higginsianum. By combining high-pressure freezing and freeze-substitution with SBF-SEM, followed by segmentation and reconstruction of the imaging volume using the freely accessible software IMOD, we created 3D models of the series of cytological events that occur during the Colletotrichum–Arabidopsis susceptible interaction. We found that the host cell membranes underwent massive expansion to accommodate the rapidly growing intracellular hypha. As the fungal infection proceeded from the biotrophic to the necrotrophic stage, the host cell membranes went through increasing levels of disintegration culminating in host cell death. Intriguingly, we documented autophagosomes in proximity to biotrophic hyphae using transmission electron microscopy (TEM) and a concurrent increase in autophagic flux between early to mid/late biotrophic phase of the infection process. Occasionally, we observed osmiophilic bodies in the vicinity of biotrophic hyphae using TEM only and near necrotrophic hyphae under both TEM and SBF-SEM. Overall, we established a method for obtaining serial SBF-SEM images, each with a lateral ( x-y) pixel resolution of 10 nm and an axial ( z) resolution of 40 nm, that can be reconstructed into interactive 3D models using the IMOD. Application of this method to the Colletotrichum–Arabidopsis pathosystem allowed us to more fully understand the spatial arrangement and morphological architecture of the fungal hyphae after they penetrate epidermal cells of Arabidopsis cotyledons and the cytological changes the host cell undergoes as the infection progresses toward necrotrophy. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .more » « less