skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Michalko, Aaron"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Transverse translation-diverse phase retrieval (TTDPR), a ptychographic wavefront-sensing technique, is a viable method for optical surface metrology due to its relatively simple hardware requirements, flexibility, and high demonstrated accuracy in other fields. In TTDPR, a subaperture illumination pattern is scanned across an optic under test, and the reflected intensity is gathered on an array detector near focus. A nonlinear optimization algorithm is used to reconstruct the wavefront aberration at the test surface, from which we can solve for surface error, using intensity patterns from multiple scan positions. TTDPR is an advantageous method for aspheric and freeform metrology, because measurements can be performed without null optics. We report on a sensitivity analysis of TTDPR using simulations of a freeform concave mirror measurement. Simulations were performed to test TTDPR algorithmic performance as a function of various parameters, including detector SNR and position uncertainty of the illumination. 
    more » « less