skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Micheli, Marco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract It is important to test the possible existence of fifth forces, as ultralight bosons that would mediate these are predicted to exist in several well-motivated extensions of the Standard Model. Recent work indicated asteroids as promising probes, but applications to real data are lacking so far. Here we use the OSIRIS-REx mission and ground-based tracking data for the asteroid Bennu to derive constraints on fifth forces. Our limits are strongest for mediator massesm ~ (10−18-10−17) eV, where we currently achieve the tightest bounds. These can be translated to a wide class of models leading to Yukawa-type fifth forces, and we demonstrate how they apply toU(1)Bdark photons and baryon-coupled scalars. Our results demonstrate the potential of asteroid tracking in probing well-motivated extensions of the Standard Model and ultralight bosons near the fuzzy dark matter range. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract Nongravitational accelerations in the absence of observed activity have recently been identified on near-Earth objects (NEOs), opening the question of the prevalence of anisotropic mass loss in the near-Earth environment. Motivated by the necessity of nongravitational accelerations to identify 2010 VL65and 2021 UA12as a single object, we investigate the problem of linking separate apparitions in the presence of nongravitational perturbations. We find that nongravitational accelerations on the order of 1 × 10–9au day−2can lead to a change in plane-of-sky positions of ∼1 × 103arcsec between apparitions. Moreover, we inject synthetic tracklets of hypothetical nongravitationally accelerating NEOs into the Minor Planet Center orbit identification algorithms. We find that at large nongravitational accelerations (∣Ai∣ ≥ 1 × 10−8au day−2) these algorithms fail to link a significant fraction of these tracklets. We further show that if orbits can be determined for both apparitions, the tracklets will be linked regardless of nongravitational accelerations, although they may be linked to multiple objects. In order to aid in the identification and linkage of nongravitationally accelerating objects, we propose and test a new methodology to search for unlinked pairs. When applied to the current census of NEOs, we recover the previously identified case but identify no new linkages. We conclude that current linking algorithms are generally robust to nongravitational accelerations, but objects with large nongravitational accelerations may potentially be missed. While current algorithms are well-positioned for the anticipated increase in the census population from future survey missions, it may be possible to find objects with large nongravitational accelerations hidden in isolated tracklet pairs. 
    more » « less
    Free, publicly-accessible full text available November 22, 2025
  3. Small bodies are capable of delivering essential prerequisites for the development of life, such as volatiles and organics, to the terrestrial planets. For example, empirical evidence suggests that water was delivered to the Earth by hydrated planetesimals from distant regions of the Solar System. Recently, several morphologically inactive near-Earth objects were reported to experience significant nongravitational accelerations inconsistent with radiation-based effects, and possibly explained by volatile-driven outgassing. However, these “dark comets” display no evidence of comae in archival images, which are the defining feature of cometary activity. Here, we report detections of nongravitational accelerations on seven additional objects classified as inactive (doubling the population) that could also be explainable by asymmetric mass loss. A detailed search of archival survey and targeted data rendered no detection of dust activity in any of these objects in individual or stacked images. We calculate dust production limits of 10, 0.1 , and 0.1 kg s 1 for 1998 FR 11 , 2001 ME 1 , and 2003 RM with these data, indicating little or no dust surrounding the objects during the observations. This set of dark comets reveals the delineation between two distinct populations: larger, “outer” dark comets on eccentric orbits that are end members of a continuum in activity level of comets, and smaller, “inner” dark comets on near-circular orbits that could signify a different different population. These objects may trace various stages in the life cycle of a previously undetected, but potentially numerous, volatile-rich population that may have provided essential material to the Earth. 
    more » « less
    Free, publicly-accessible full text available December 17, 2025
  4. Abstract We report initial observations aimed at the characterization of a third interstellar object. This object, 3I/ATLAS or C/2025 N1 (ATLAS), was discovered on 2025 July 1 UT and has an orbital eccentricity ofe ∼ 6.1, perihelion ofq ∼ 1.36 au, inclination of ∼175°, and hyperbolic velocity ofV ∼ 58 km s−1. We report deep stacked images obtained using the Canada–France–Hawaii Telescope and the Very Large Telescope that resolve a compact coma. Using images obtained from several smaller ground-based telescopes, we find minimal light-curve variation for the object over a ∼4 day time span. The visible/near-infrared spectral slope of the object is 17.1% ± 0.2%/100 nm, comparable to other interstellar objects and primitive solar system small bodies (comets and D-type asteroids). Moreover, 3I/ATLAS will be observable through early 2025 September, then unobservable by Earth-based observatories near perihelion due to low solar elongation. It will be observable again from the ground in late 2025 November. Although this limitation unfortunately prohibits detailed Earth-based observations at perihelion when the activity of 3I/ATLAS is likely to peak, spacecraft at Mars could be used to make valuable observations at this time. 
    more » « less
    Free, publicly-accessible full text available August 13, 2026
  5. Abstract We are conducting a survey using twilight time on the Dark Energy Camera with the Blanco 4 m telescope in Chile to look for objects interior to Earth’s and Venus’ orbits. To date we have discovered two rare Atira/Apohele asteroids, 2021 LJ4 and 2021 PH27, which have orbits completely interior to Earth’s orbit. We also discovered one new Apollo-type Near Earth Object (NEO) that crosses Earth’s orbit, 2022 AP7. Two of the discoveries have diameters ≳1 km. 2022 AP7 is likely the largest Potentially Hazardous Asteroid (PHA) discovered in about eight years. To date we have covered 624 square degrees of sky near to and interior to the orbit of Venus. The average images go to 21.3 mag in the r band, with the best images near 22nd mag. Our new discovery 2021 PH27 has the smallest semimajor axis known for an asteroid, 0.4617 au, and the largest general relativistic effects (53 arcsec/century) known for any body in the solar system. The survey has detected ∼15% of all known Atira NEOs. We put strong constraints on any stable population of Venus co-orbital resonance objects existing, as well as the Atira and Vatira asteroid classes. These interior asteroid populations are important to complete the census of asteroids near Earth, including some of the most likely Earth impactors that cannot easily be discovered in other surveys. Comparing the actual population of asteroids found interior to Earth and Venus with those predicted to exist by extrapolating from the known population exterior to Earth is important to better understand the origin, composition, and structure of the NEO population. 
    more » « less