skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 22, 2025

Title: Strong Nongravitational Accelerations and the Potential for Misidentification of Near-Earth Objects
Abstract Nongravitational accelerations in the absence of observed activity have recently been identified on near-Earth objects (NEOs), opening the question of the prevalence of anisotropic mass loss in the near-Earth environment. Motivated by the necessity of nongravitational accelerations to identify 2010 VL65and 2021 UA12as a single object, we investigate the problem of linking separate apparitions in the presence of nongravitational perturbations. We find that nongravitational accelerations on the order of 1 × 10–9au day−2can lead to a change in plane-of-sky positions of ∼1 × 103arcsec between apparitions. Moreover, we inject synthetic tracklets of hypothetical nongravitationally accelerating NEOs into the Minor Planet Center orbit identification algorithms. We find that at large nongravitational accelerations (∣Ai∣ ≥ 1 × 10−8au day−2) these algorithms fail to link a significant fraction of these tracklets. We further show that if orbits can be determined for both apparitions, the tracklets will be linked regardless of nongravitational accelerations, although they may be linked to multiple objects. In order to aid in the identification and linkage of nongravitationally accelerating objects, we propose and test a new methodology to search for unlinked pairs. When applied to the current census of NEOs, we recover the previously identified case but identify no new linkages. We conclude that current linking algorithms are generally robust to nongravitational accelerations, but objects with large nongravitational accelerations may potentially be missed. While current algorithms are well-positioned for the anticipated increase in the census population from future survey missions, it may be possible to find objects with large nongravitational accelerations hidden in isolated tracklet pairs.  more » « less
Award ID(s):
2303553
PAR ID:
10591669
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
AAS
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
976
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
190
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Interstellar interlopers are bodies formed outside of the Solar System but observed passing through it. The first two identified interlopers, 1I/‘Oumuamua and 2I/Borisov, exhibited unexpectedly different physical properties. 1I/‘Oumuamua appeared unresolved and asteroid-like, whereas 2I/Borisov was a more comet-like source of both gas and dust. Both objects moved under the action of nongravitational acceleration. These interlopers and their divergent properties provide our only window so far onto an enormous and previously unknown galactic population. The number density of such objects is ∼0.1 AU−3which, if uniform across the galactic disk, would imply 1025to 1026similar objects in the Milky Way. The interlopers likely formed in, and were ejected from, the protoplanetary disks of young stars. However, we currently possess too little data to firmly reject other explanations. ▪ 1I/‘Oumuamua and 2I/Borisov are both gravitationally unbound, subkilometer bodies showing nongravitational acceleration. ▪ The acceleration of 1I/‘Oumuamua in the absence of measurable mass loss requires either a strained explanation in terms of recoil from sublimating supervolatiles or the action of radiation pressure on a nucleus with an ultralow mass column density, ∼1 kg m−2. ▪ 2I/Borisov is a strong source of CO and H2O, which together account for its activity and nongravitational acceleration. ▪ The interlopers are most likely planetesimals from the protoplanetary disks of other stars, ejected by gravitational scattering from planets. 1I/‘Oumuamua and 2I/Borisov have dynamical ages ∼108and ∼109years, respectively. ▪ Forthcoming observatories should detect interstellar interlopers every year, which will provide a rapid boost to our knowledge of the population. 
    more » « less
  2. Abstract We present the first set of trans-Neptunian objects (TNOs) observed on multiple nights in data taken from the DECam Ecliptic Exploration Project. Of these 110 TNOs, 105 do not coincide with previously known TNOs and appear to be new discoveries. Each individual detection for our objects resulted from a digital tracking search at TNO rates of motion, using two-to-four-hour exposure sets, and the detections were subsequently linked across multiple observing seasons. This procedure allows us to find objects with magnitudesmVR≈ 26. The object discovery processing also included a comprehensive population of objects injected into the images, with a recovery and linking rate of at least 94%. The final orbits were obtained using a specialized orbit-fitting procedure that accounts for the positional errors derived from the digital tracking procedure. Our results include robust orbits and magnitudes for classical TNOs with absolute magnitudesH∼ 10, as well as a dynamically detached object found at 76 au (semimajor axisa≈ 77 au). We find a disagreement between our population of classical TNOs and the CFEPS-L7 three-component model for the Kuiper Belt. 
    more » « less
  3. Abstract Near-Earth Objects (NEOs) are a transient population of small bodies with orbits near or in the terrestrial planet region. They represent a mid-stage in the dynamical cycle of asteroids and comets, which starts with their removal from the respective source regions—the main belt and trans-Neptunian scattered disk—and ends as bodies impact planets, disintegrate near the Sun, or are ejected from the solar system. Here we develop a new orbital model of NEOs by numerically integrating asteroid orbits from main-belt sources and calibrating the results on observations of the Catalina Sky Survey. The results imply a size-dependent sampling of the main belt with the ν 6 and 3:1 resonances producing ≃30% of NEOs with absolute magnitudes H = 15 and ≃80% of NEOs with H = 25. Hence, the large and small NEOs have different orbital distributions. The inferred flux of H < 18 bodies into the 3:1 resonance can be sustained only if the main-belt asteroids near the resonance drift toward the resonance at the maximal Yarkovsky rate (≃2 × 10 −4 au Myr −1 for diameter D = 1 km and semimajor axis a = 2.5 au). This implies obliquities θ ≃ 0° for a < 2.5 au and θ ≃ 180° for a > 2.5 au, both in the immediate neighborhood of the resonance (the same applies to other resonances as well). We confirm the size-dependent disruption of asteroids near the Sun found in previous studies. An interested researcher can use the publicly available NEOMOD Simulator to generate user-defined samples of NEOs from our model. 
    more » « less
  4. NA (Ed.)
    Catalina Sky Survey (CSS) is a major survey of Near-Earth Objects (NEOs). In a recent work, we used CSS observations from 2005–2012 to develop a new population model of NEOs (NEOMOD). CSS’s G96 telescope was upgraded in 2016 and detected over 10,000 unique NEOs since then. Here we characterize the NEO detection efficiency of G96 and use G96’s NEO detections from 2013–2022 to update NEOMOD. This resolves previous model inconsistencies related to the population of large NEOs. We estimate there are 936 ± 29 NEOs with absolute magnitude 𝐻 < 17.75 (diameter 𝐷 > 1 km for the reference albedo 𝑝V = 0.14) and semimajor axis 𝑎 < 4.2 au. The slope of the NEO size distribution for 𝐻 = 25–28 is found to be relatively shallow (cumulative index ≃ 2.6) and the number of 𝐻 < 28 NEOs (𝐷 > 9 m for 𝑝V = 0.14) is determined to be (1.20 ± 0.04) × 107 , about 3 times lower than in Harris & Chodas (2021). Small NEOs have a different orbital distribution and higher impact probabilities than large NEOs. We estimate 0.034 ± 0.002 impacts of 𝐻 < 28 NEOs on the Earth per year, which is near the low end of the impact flux range inferred from atmospheric bolide observations. Relative to a model where all NEOs are delivered directly from the main belt, the population of small NEOs detected by G96 shows an excess of low-eccentricity orbits with 𝑎 ≃ 1–1.6 au that appears to increase with 𝐻 (≃ 30% excess for 𝐻 = 28). We suggest that the population of very small NEOs is boosted by tidal disruption of large NEOs during close encounters to the terrestrial planets. When the effect of tidal disruption is (approximately) accounted for in the model, we estimate 0.06 ± 0.01 impacts of 𝐻 < 28 NEOs on the Earth per year, which is more in line with the bolide data. The impact probability of a 𝐻 < 22 (𝐷 > 140 m for 𝑝V = 0.14) object on the Earth in this millennium is estimated to be ≃ 4.5% 
    more » « less
  5. Abstract Recent advances in numerical simulations of magnetically arrested accretion onto supermassive black holes have shed light on the formation and dynamics of magnetospheric current sheets near the black hole horizon. By considering the pair magnetizationσein the upstream region and the mass accretion rateṁ(in units of the Eddington mass accretion rate) as free parameters we estimate the strength of the magnetic field and develop analytical models, motivated by recent three-dimensional particle-in-cell simulations, to describe the populations of relativistic electrons and positrons (pairs) in the reconnection region.Applying our model to M87*, we numerically compute the non-thermal photon spectra for various values ofσe. We show that pairs that are accelerated up to the synchrotron radiation-limited energy while meandering across both sides of the current sheet, can produce MeV flares with luminosity of ∼ 1041 erg s-1— independent ofσe— for a black hole accreting atṁ=10-5. Pairs that are trapped in the transient current sheet can produce X-ray counterparts to the MeV flares, lasting about a day for current sheets with length of a few gravitational radii. We also show that the upstream plasma can be enriched due to photon-photon pair creation, and derive a new equilibrium magnetization ofσe∼ 103-104forṁ= 10-6- 10-5. Additionally, we explore the potential of magnetospheric current sheets to accelerate protons to ultra-high energies, finding that while acceleration to such energies is limited by various loss mechanisms, such as synchrotron and photopion losses from the non-thermal emission from pairs, maximal proton energies in the range of a few EeV are attainable in magnetospheric sheets forming around supermassive sub-Eddington accreting black holes. 
    more » « less