skip to main content

Search for: All records

Creators/Authors contains: "Middleton, Hannah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 13, 2023
  2. ABSTRACT

    A population of supermassive black hole (SMBH) binaries is expected to generate a stochastic gravitational wave background (SGWB) in the pulsar timing array (PTA) frequency range of 10−9 to $10^{-7}\, {\rm Hz}$. Detection of this signal is a current observational goal and so predictions of its characteristics are of significant interest. In this work, we use SMBH binary mergers from the MassiveBlackII simulation to estimate the characteristic strain of the stochastic background. We examine both a gravitational wave (GW) driven model of binary evolution and a model which also includes the effects of stellar scattering and a circumbinary gas disc. Results are consistent with PTA upper limits and similar to estimates in the literature. The characteristic strain at a reference frequency of $1\, {\rm yr}^{-1}$ is found to be $A_{\rm {yr}^{-1}}= 6.9 \times 10^{-16}$ and $A_{\rm {yr}^{-1}}= 6.4 \times 10^{-16}$ in the GW-driven and stellar scattering/gas disc cases, respectively. Using the latter approach, our models show that the SGWB is mildly suppressed compared to the purely GW-driven model as frequency decreases inside the PTA frequency band.