# Search for:All records

Creators/Authors contains: "Miller, Claire"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

1. Abstract

It is important to understand how students reason in K-12 integrated STEM settings to better prepare teachers to engage their students in integrated STEM tasks. To understand the reasoning that occurs in these settings, we used the lens of collective argumentation, specifically attending to the types of warrants elementary students and their teachers provided and accepted in integrated STEM contexts and how teachers supported students in providing these warrants. We watched 103 h of classroom instruction from 10 elementary school teachers and analyzed warrants that occurred in arguments in mathematics, coding, and integrated contexts to develop a typology of warrants contributed in mathematics and coding arguments. We found that these students made their warrants explicit the majority of the time, regardless of the teacher’s presence or absence. When teachers were present, they supported argumentation in various ways; however, they offered less support in integrated contexts. Additionally, we found students relied more on visual observations in coding contexts than in mathematics or integrated contexts, where they often provided warrants based on procedures required to accomplish a task. These findings have implications for improving integrated STEM instruction through engaging students in argumentation.

more » « less
2. ; ; (Ed.)
Argumentation is widely used in teaching mathematics, but little research has been done on argumentation in teaching integrated mathematics and coding. As part of a larger study investigating collective argumentation in teaching mathematics, science, and coding, we classified the warrants given by elementary-age students who were engaged in argumentation in mathematics and coding. Three ma}or categories - calculation, visual, and unformalized knowledge - accounted for the majority of warrants given. Further analysis revealed differences in types of warrants when the primary focus of the argument was coding versus when the primary focus of the argument was mathematics. Our results suggest that expecting students to provide reasons for modifying their code, similar to what is expected in mathematics arguments, helps move them away from a trial-and-error to a more structured approach to coding.
more » « less
3. A collaborative team of STEM educators engaged elementary school teachers in professional development to support them in implementing collective argumentation in mathematics, science, and coding. Attendees will consider the feasibility of integrating coding and argumentation across multiple disciplines.
more » « less
4. Collective Argumentation Learning and Coding (CALC) is a research project that provides teachers with strategies to engage students in collective argumentation in mathematics, science, and coding. Thirty-two elementary teachers participated in a semester-long professional development course that included coding content and discussions about using collective argumentation across multiple disciplines. Ten teachers were selected for the enactment phase, in which classroom observations and coaching sessions were conducted during the semester after completing the professional development course.
more » « less
5. ; ; (Ed.)
Collective Argumentation Learning and Coding (CALC) is a project focused on providing teachers with strategies to engage students in collective argumentation in mathematics, science, and coding. Collective argumentation can be characterized by any instance where multiple people (teachers and students) work together to establish a claim and provide evidence to support it (Conner et al., 2014b). Collective argumentation is an effective approach for promoting critical and higher order thinking and supporting students’ ability to articulate and justify claims. The goal of the CALC project is to help elementary school teachers extend the use of collective argumentation from teaching mathematics and science to teaching coding. Doing so increases the probability that teachers will integrate coding in regular classroom instruction, making it accessible to all students. This project highlighted Gloria (pseudonym), a fourth-grade teacher from Cohort 1 because of the extent to which she went from fear of coding to fluent implementation. Initially, Gloria was comfortable engaging her students in argumentation, explaining they already used it in mathematics with Cognitively Guided Instruction (CGI). However, she was “terrified” about learning to code because she didn’t view herself as proficient with technology. She was willing to overcome her fear of coding because she saw the value in providing her students with coding experiences that would help them develop the necessary skills for our increasingly technological society. In the course of three months, Gloria’s instruction progressed from using simple coding activities to more sophisticated coding platforms. This progression in her coding instruction paralleled the change in her personal feelings about coding as she moved from “terrified” to “comfortable with it”.
more » « less
6. ; ; (Ed.)
Teachers in the elementary grades often teach all subjects and are expected to have appropriate content knowledge of a wide range of disciplines. Current recommendations suggest teachers should integrate multiple disciplines into the same lesson, for instance, when teaching integrated STEM lessons. Although there are many similarities between STEM fields, there are also epistemological differences to be understood by students and teachers. This study investigated teachers’ beliefs about teaching mathematics and science using argumentation and the epistemological and contextual factors that may have influenced these beliefs. Teachers’ beliefs about different epistemological underpinnings of mathematics and science, along with contextual constraints, led to different beliefs and intentions for practice with respect to argumentation in these disciplines. The contextual constraint of testing and the amount of curriculum the teachers perceived as essential focused more attention on the teaching of mathematics, which could be seen as benefiting student learning of mathematics. On the other hand, the perception of science as involving wonder, curiosity, and inherently positive and interesting ideas may lead to the creation of a more positive learning environment for the teaching of science. These questions remain open and need to be studied further: What are the consequences of perceiving argumentation in mathematics as limited to concepts already well-understood? Can integrating the teaching of mathematics and science lead to more exploratory and inquiry-based teaching of mathematical ideas alongside scientific ones?
more » « less