Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Many ways to build an angler: diversity of feeding morphologies in a deep-sea evolutionary radiationAlmost nothing is known about the diets of bathypelagic fishes, but functional morphology can provide useful tools to infer ecology. Here we quantify variation in jaw and tooth morphologies across anglerfishes (Lophiiformes), a clade spanning shallow and deep-sea habitats. Deep-sea ceratioid anglerfishes are considered dietary generalists due to the necessity of opportunistic feeding in the food-limited bathypelagic zone. We found unexpected diversity in the trophic morphologies of ceratioid anglerfishes. Ceratioid jaws span a functional continuum ranging from species with numerous stout teeth, a relatively slow but forceful bite, and high jaw protrusibility at one end (characteristics shared with benthic anglerfishes) to species with long fang-like teeth, a fast but weak bite and low jaw protrusibility at the other end (including a unique ‘wolftrap’ phenotype). Our finding of high morphological diversity seems to be at odds with ecological generality, reminiscent of Liem's paradox (morphological specialization allowing organisms to have broader niches). Another possible explanation is that diverse ceratioid functional morphologies may yield similar trophic success (many-to-one mapping of morphology to diet), allowing diversity to arise through neutral evolutionary processes. Our results highlight that there are many ways to be a successful predator in the deep sea.more » « less
-
ABSTRACT Colonization of a novel habitat is often followed by radiation in the wake of ecological opportunity. Alternatively, some habitats should be inherently more constraining than others if the challenges of that environment have few evolutionary solutions. We examined the push-and-pull of these factors on evolution following habitat transitions, using anglerfishes (Lophiiformes) as a model. Deep-sea fishes are notoriously difficult to study, and poor sampling has limited progress thus far. Here we present a new phylogeny of anglerfishes with unprecedented taxonomic sampling (1,092 loci and 40% of species), combined with three-dimensional phenotypic data from museum specimens obtained with micro-CT scanning. We use these datasets to examine the tempo and mode of phenotypic and lineage diversification using phylogenetic comparative methods, comparing lineages in shallow and deep benthic versus bathypelagic habitats. Our results show that anglerfishes represent a surprising case where the bathypelagic lineage has greater taxonomic and phenotypic diversity than coastal benthic relatives. This defies expectations based on ecological principles since the bathypelagic zone is the most homogeneous habitat on Earth. Deep-sea anglerfishes experienced rapid lineage diversification concomitant with colonization of the bathypelagic zone from a continental slope ancestor. They display the highest body, skull and jaw shape disparity across lophiiforms. In contrast, reef-associated taxa show strong constraints on shape and low evolutionary rates, contradicting patterns suggested by other shallow marine fishes. We found that Lophiiformes as a whole evolved under an early burst model with subclades occupying distinct body shapes. We further discuss to what extent the bathypelagic clade is a secondary adaptive radiation, or if its diversity can be explained by non-adaptive processes.more » « less
-
The deep sea contains a surprising diversity of life, including iconic fish groups such as anglerfishes and lanternfishes. Still, >65% of marine teleost fish species are restricted to the photic zone <200 m, which comprises less than 10% of the ocean’s total volume. From a macroevolutionary perspective, this paradox may be explained by three hypotheses: 1) shallow water lineages have had more time to diversify than deep-sea lineages, 2) shallow water lineages have faster rates of speciation than deep-sea lineages, or 3) shallow-to-deep sea transition rates limit deep-sea richness. Here we use phylogenetic comparative methods to test among these three non-mutually exclusive hypotheses. While we found support for all hypotheses, the disparity in species richness is better described as the uneven outcome of alternating phases that favored shallow or deep diversification over the past 200 million y. Shallow marine teleosts became incredibly diverse 100 million y ago during a period of warm temperatures and high sea level, suggesting the importance of reefs and epicontinental settings. Conversely, deep-sea colonization and speciation was favored during brief episodes when cooling temperatures increased the efficiency of the ocean’s carbon pump. Finally, time-variable ecological filters limited shallow-to-deep colonization for much of teleost history, which helped maintain higher shallow richness. A pelagic lifestyle and large jaws were associated with early deep-sea colonists, while a demersal lifestyle and a tapered body plan were typical of later colonists. Therefore, we also suggest that some hallmark characteristics of deep-sea fishes evolved prior to colonizing the deep sea.more » « less
An official website of the United States government
