- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001000003000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Miller, Isabel (4)
-
Jensen, Karin (2)
-
Jensen, Karin J (1)
-
Jensen, Karin_J (1)
-
Jensen, Paul_A (1)
-
Kunze, Andrea (1)
-
Martin, Julie P (1)
-
Mirabelli, Joseph (1)
-
Mobley, IV, John (1)
-
Romanchek, Thomas (1)
-
Sanders, Jeanne (1)
-
Sochacka, Nicola_W (1)
-
Suresh, Deepthi E (1)
-
Vohra, Sara (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sanders, Jeanne; Mobley, IV, John; Miller, Isabel; Sochacka, Nicola_W; Jensen, Paul_A; Jensen, Karin_J (, Journal of Engineering Education)Abstract BackgroundGenerative artificial intelligence (AI) large‐language models (LLMs) have significant potential as research tools. However, the broader implications of using these tools are still emerging. Few studies have explored using LLMs to generate data for qualitative engineering education research. Purpose/HypothesisWe explore the following questions: (i) What are the affordances and limitations of using LLMs to generate qualitative data in engineering education, and (ii) in what ways might these data reproduce and reinforce dominant cultural narratives in engineering education, including narratives of high stress? Design/MethodsWe analyzed similarities and differences between LLM‐generated conversational data (ChatGPT) and qualitative interviews with engineering faculty and undergraduate engineering students from multiple institutions. We identified patterns, affordances, limitations, and underlying biases in generated data. ResultsLLM‐generated content contained similar responses to interview content. Varying the prompt persona (e.g., demographic information) increased the response variety. When prompted for ways to decrease stress in engineering education, LLM responses more readily described opportunities for structural change, while participants' responses more often described personal changes. LLM data more frequently stereotyped a response than participants did, meaning that LLM responses lacked the nuance and variation that naturally occurs in interviews. ConclusionsLLMs may be a useful tool in brainstorming, for example, during protocol development and refinement. However, the bias present in the data indicates that care must be taken when engaging with LLMs to generate data. Specially trained LLMs that are based only on data from engineering education hold promise for future research.more » « less
-
Miller, Isabel; Jensen, Karin (, Advances in engineering education)
-
Jensen, Karin; Vohra, Sara; Mirabelli, Joseph; Kunze, Andrea; Miller, Isabel; Romanchek, Thomas (, CAREER: Supporting Undergraduate Mental Health by Building a Culture of Wellness in Engineering)null (Ed.)
An official website of the United States government

Full Text Available