Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ion transport in solid polymer electrolytes is crucial for applications like energy conversion and storage, as well as carbon dioxide capture. However, most of the materials studied in this area are petroleum-based. Natural materials (biopolymers) have the potential to act as alternatives to petroleum-based products and, when derived with ionic liquid (IL) functionalities, present a sustainable alternative for conductive materials by offering tunable morphological, thermal, and mechanical properties. In this study, a series of IL-functionalized cellulose derivatives with variations in pendant alkyl chain length, counteranions, and degrees of substitution were synthesized in order to explore structure-property relationships. Emphasis was placed on investigating morphological, thermal, and ionic conductivity changes, hypothesizing that materials synthesized with longer alkyl chains would exhibit increased backbone-to-backbone spacing, thereby lowering the glass transition temperature, and enhancing ionic conductivity. A variety of characterization techniques were used for this investigation, including nuclear magnetic resonance spectroscopy (NMR), elemental analysis, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray scattering, and dielectric relaxation spectroscopy (DRS). The findings reveal a link between longer alkyl chain lengths, expanded backbone-backbone spacing, and side chain interdigitation. Within each set of samples, heightened ionic conductivity was observed with the introduction of bulkier, less coordinating anions, underscoring the significant influence of counteranion size.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract Polymeric donors of gasotransmitters, gaseous signaling molecules such as hydrogen sulfide, nitric oxide, and carbon monoxide, hold potential for localized and extended delivery of these reactive gases. Examples of gasotransmitter donors based on polysaccharides are limited despite the availability and generally low toxicity of this broad class of polymers. In this work, we sought to create a polysaccharide H2S donor by covalently attachingN‐thiocarboxyanhydrides (NTAs) to amylopectin, the major component of starch. To accomplish this, we added an allyl group to an NTA, which can spontaneously hydrolyze to release carbonyl sulfide and ultimately H2S via the ubiquitous enzyme carbonic anhydrase, and then coupled it to thiol‐functionalized amylopectin of three different molecular weights (MWs) through thiol‐ene “click” photochemistry. We also varied the degree of substitution (DS) of the NTA along the amylopectin backbone. H2S release studies on the six samples, termed amyl‐NTAs, with variable MWs (three) and DS values (two), revealed that lower MW and higher DS led to faster release. Finally, dynamic light scattering experiments suggested that aggregation increased with MW, which may also have affected H2S release rates. Collectively, these studies present a new synthetic method to produce polysaccharide H2S donors for applications in the biomedical field.more » « less
-
Dual ionic liquid-substituted cellulosic materials were prepared by coupling a series of alkyne-terminated imidazoles with variable carbon spacer with azide-functionalized cellulose, followed by quaternization and anion exchange. All three of the [NTf2]-bearing cellulosic materials exhibited Tg values below zero and could be cast as flexible films, which exhibited stress at break values exceeding 2.3 MPa with strain at break values up to 252%. X-ray scattering analyses indicated the amorphous nature of the cellulosic materials with three scattering peaks observed, from high-to-low q, corresponding to the amorphous halo, anion-to-anion distance, and the distance between ion aggregates, respectively. The highest degree of ionic aggregation was found to exist in the CELL-C12-NTf2 material, presumably due to the longer alkyl tethers causing more uniformity in the interaggregate spacing. The conductivity of the films was found to be on the order of 10−5−10−6 S/cm at 30 °C. A slower increase in conductivity with temperature was observed for systems where ionic aggregation was the strongest.more » « less
-
Abstract The synthesis and characterization of a series of polyurethane ionenes using a non‐isocyanate approach is disclosed. Imidazole‐capped, urethane‐containing prepolymers are prepared by first reacting carbonyl diimidazole (CDI) with several poly(propylene glycol) (PPG) diols with variable molecular weight, followed by subsequent reaction with 3‐aminopropylimidazole (API). Polymerization with 1,4‐dibromomethylbenzene followed by anion exchange resulted in the desired polyurethane ionenes bearing the [NTf2] counteranion as a series of viscous liquids. NMR and FTIR spectroscopy are used to characterize the intermediates and final ionenes, including molecular weight determination by end‐group analysis. A single glass transition temperature (Tg), as determined by differential scanning calorimetry (DSC), is observed for each ionene (−38 to −64 °C) with theTgdecreasing with increasing PPG molecular weight. Thermogravimetric analysis (TGA) indicated a two‐step decomposition for each ionene, with the first being degradation of the PPG segment, followed by the urethane/ionic segment. Microphase separation is observed from x‐ray scattering profiles with Bragg distances that increased with increasing PPG molecular weight. Ionic conductivity is found to be inversely dependent upon DSCTgat lower temperatures (RT and below); however, at higher temperatures, conductivity appears to be more dependent upon the ability of ionic aggregates caused by phase separation to interact.more » « less
-
Poly(ionic liquid) covalently adaptable networks containing thermoreversible furan–maleimide linkages were prepared and characterized for their thermal, mechanical and conductive properties. Self-healing behaviour was initially evaluated using oscillatory rheology where a G ′/ G ′′ crossover temperature of ∼110 °C was observed. Anhydrous conductivities, as determined by dielectric relaxation spectroscopy, were found to be on the order of 10 −8 S cm −1 at 30 °C. Recovery of >70% of the original stress and strain at break was found within 2 hours at 105 °C as determined from tensile testing experiments, with breakage occurring at a new point on the film. Recovery of conductivity was completed utilizing chronoamperometric cycling whereby >75% of the original current was recovered within two hours at 110 °C.more » « less
-
Abstract In this study, poly(ethylene terephthalate)‐block‐polyethylene (PET‐PE) multiblock copolymers (MBCPs) with block molar masses of ~4 or 7 kg mol−1and either alternating or random block sequencing, and a PE‐PET‐PE triblock copolymer (TBCP) of comparable total molar mass, were synthesized. To explore the effect of molecular architecture on compatibilization, both MBCPs and TBCPs were blended into 80/20 wt/wt mixtures of PET/linear low‐density PE (LLDPE). Compatibilization was remarkably efficient for all MBCP types, with the addition of 0.2 wt% yielding blends nearly as tough as PET homopolymer. Addition of MBCP also significantly decreases LLDPE dispersed phase sizes compared to PET/LLDPE neat blends, as much as 80% in as‐mixed blends and by a factor of 10 in post‐mixing thermally annealed samples. Conversely, the TBCP was less efficient at decreasing domain sizes of the blends and improving the mechanical properties, requiring loadings of 1 wt% to produce comparably tough blends. Peel tests of PET/BCP/LLDPE trilayer films showed that both MBCPs and TBCP all improve interfacial strength over a PET‐PE bilayer film by two orders of magnitude; however, when the BCPs were preloaded into LLDPE, only the MBCP containing films showed strong adhesion highlighting their potential utility as adhesive agents in multilayer films.more » « less
An official website of the United States government
