Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the first results of the holographic beam-mapping program for the Canadian Hydrogen Intensity Mapping Experiment (CHIME). We describe the implementation of a holographic technique as adapted for CHIME, and introduce the processing pipeline which prepares the raw holographic timestreams for analysis of beam features. We use data from six bright sources across the full 400–800 MHz observing band of CHIME to provide measurements of the copolar and cross-polar beam response in both amplitude and phase for all 1024 dual-polarized feeds in the array. In addition, we present comparisons with independent probes of the CHIME beam, which indicate the presence of polarized beam leakage. Holographic measurements of the beam have already been applied in science with CHIME, e.g., in estimating the detection significance of far-sidelobe fast radio bursts, and in validating the beam models used for CHIME’s first detections of 21 cm emission (in cross-correlation with measurements of large-scale structure from galaxy surveys and the Lyαforest). Measurements presented in this paper, and future holographic results, will provide a unique data set to characterize the CHIME beam and improve the experiment’s prospects for a detection of the baryon acoustic oscillation signal.more » « less
-
Free, publicly-accessible full text available November 1, 2025
-
Abstract We report 10 fast radio bursts (FRBs) detected in the far sidelobe region (i.e., ≥5° off-meridian) of the Canadian Hydrogen Intensity Mapping Experiment (CHIME) from August 28 2018 to August 31 2021. We localize the bursts by fitting their spectra with a model of the CHIME/FRB synthesized beam response. We find that the far sidelobe events have on average ∼500 times greater fluxes than events detected in CHIME’s main lobe. We show that the sidelobe sample is therefore statistically ∼20 times closer than the main lobe sample. We find promising host galaxy candidates (Pcc< 1%) for two of the FRBs, 20190112B and 20210310B, at distances of 38 and 16 Mpc, respectively. CHIME/FRB did not observe repetition of similar brightness from the uniform sample of 10 sidelobe FRBs in a total exposure time of 35,580 hr. Under the assumption of Poisson-distributed bursts, we infer that the mean repetition interval above the detection threshold of the far sidelobe events is longer than 11,880 hr, which is at least 2380 times larger than the interval from known CHIME/FRB detected repeating sources, with some caveats, notably that very narrowband events could have been missed. Our results from these far sidelobe events suggest one of two scenarios: either (1) all FRBs repeat and the repetition intervals span a wide range, with high-rate repeaters being a rare sub-population, or (2) non-repeating FRBs are a distinct population different from known repeaters.more » « lessFree, publicly-accessible full text available October 25, 2025
-
Abstract We report the detection of 21 cm emission at an average redshift in the cross-correlation of data from the Canadian Hydrogen Intensity Mapping Experiment (CHIME) with measurements of the Lyαforest from eBOSS. Data collected by CHIME over 88 days in the 400–500 MHz frequency band (1.8 <z< 2.5) are formed into maps of the sky and high-pass delay filtered to suppress the foreground power, corresponding to removing cosmological scales withk∥≲ 0.13 Mpc−1at the average redshift. Line-of-sight spectra to the eBOSS background quasar locations are extracted from the CHIME maps and combined with the Lyαforest flux transmission spectra to estimate the 21 cm–Lyαcross-correlation function. Fitting a simulation-derived template function to this measurement results in a 9σdetection significance. The coherent accumulation of the signal through cross-correlation is sufficient to enable a detection despite excess variance from foreground residuals ∼6–10 times brighter than the expected thermal noise level in the correlation function. These results are the highest-redshift measurement of 21 cm emission to date, and they set the stage for future 21 cm intensity mapping analyses atz> 1.8.more » « less
-
Abstract Localizing fast radio bursts (FRBs) to their host galaxies is an essential step to better understanding their origins and using them as cosmic probes. The Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB Outriggers program aims to add very long baseline interferometry localization capabilities to CHIME, such that FRBs may be localized to tens of milliarcsecond precision at the time of their discovery, more than sufficient for host galaxy identification. The first-built outrigger telescope is theOutrigger (KKO), located 66 km west of CHIME. Cross-correlating KKO with CHIME can achieve arcsecond precision along the baseline axis while avoiding the worst effects of the ionosphere. Since the CHIME–KKO baseline is mostly east/west, this improvement is mostly in right ascension. This paper presents measurements of KKO’s performance throughout its commissioning phase, as well as a summary of its design and function. We demonstrate KKO’s capabilities as a standalone instrument by producing full-sky images, mapping the angular and frequency structure of the primary beam, and measuring feed positions. To demonstrate the localization capabilities of the CHIME–KKO baseline, we collected five separate observations each, for a set of 20 bright pulsars, and aimed to measure their positions to within 5″. All of these pulses were successfully localized to within this specification. The next two outriggers are expected to be commissioned in 2024 and will enable subarcsecond localizations for approximately hundreds of FRBs each year.more » « lessFree, publicly-accessible full text available July 24, 2025
-
Abstract We present a detection of 21 cm emission from large-scale structure (LSS) between redshift 0.78 and 1.43 made with the Canadian Hydrogen Intensity Mapping Experiment. Radio observations acquired over 102 nights are used to construct maps that are foreground filtered and stacked on the angular and spectral locations of luminous red galaxies (LRGs), emission-line galaxies (ELGs), and quasars (QSOs) from the eBOSS clustering catalogs. We find decisive evidence for a detection when stacking on all three tracers of LSS, with the logarithm of the Bayes factor equal to 18.9 (LRG), 10.8 (ELG), and 56.3 (QSO). An alternative frequentist interpretation, based on the likelihood ratio test, yields a detection significance of 7.1σ(LRG), 5.7σ(ELG), and 11.1σ(QSO). These are the first 21 cm intensity mapping measurements made with an interferometer. We constrain the effective clustering amplitude of neutral hydrogen (Hi), defined as , where ΩHiis the cosmic abundance of Hi,bHiis the linear bias of Hi, and 〈fμ2〉 = 0.552 encodes the effect of redshift-space distortions at linear order. We find for LRGs (z= 0.84), for ELGs (z= 0.96), and for QSOs (z= 1.20), with constraints limited by modeling uncertainties at nonlinear scales. We are also sensitive to bias in the spectroscopic redshifts of each tracer, and we find a nonzero bias Δv= − 66 ± 20 km s−1for the QSOs. We split the QSO catalog into three redshift bins and have a decisive detection in each, with the upper bin atz= 1.30 producing the highest-redshift 21 cm intensity mapping measurement thus far.more » « less
-
Abstract The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a drift scan radio telescope operating across the 400–800 MHz band. CHIME is located at the Dominion Radio Astrophysical Observatory near Penticton, BC, Canada. The instrument is designed to map neutral hydrogen over the redshift range 0.8–2.5 to constrain the expansion history of the universe. This goal drives the design features of the instrument. CHIME consists of four parallel cylindrical reflectors, oriented north–south, each 100 m × 20 m and outfitted with a 256-element dual-polarization linear feed array. CHIME observes a two-degree-wide stripe covering the entire meridian at any given moment, observing three-quarters of the sky every day owing to Earth’s rotation. An FX correlator utilizes field-programmable gate arrays and graphics processing units to digitize and correlate the signals, with different correlation products generated for cosmological, fast radio burst, pulsar, very long baseline interferometry, and 21 cm absorber back ends. For the cosmology back end, the correlation matrix is formed for 1024 frequency channels across the band every 31 ms. A data receiver system applies calibration and flagging and, for our primary cosmological data product, stacks redundant baselines and integrates for 10 s. We present an overview of the instrument, its performance metrics based on the first 3 yr of science data, and we describe the current progress in characterizing CHIME’s primary beam response. We also present maps of the sky derived from CHIME data; we are using versions of these maps for a cosmological stacking analysis, as well as for investigation of Galactic foregrounds.more » « less