skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mimura, Manaki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The thiamin-requiring mutants of Arabidopsis have a storied history as a foundational model for biochemical genetics in plants and have illuminated the central role of thiamin in metabolism. Recent integrative genetic and biochemical analyses of thiamin biosynthesis and utilization imply that leaf metabolism normally operates close to thiamin-limiting conditions. Thus, the mechanisms that allocate thiamin-diphosphate (ThDP) cofactor among the diverse thiamin-dependent enzymes localized in plastids, mitochondria, peroxisomes, and the cytosol comprise an intricate thiamin economy. Here, we show that the classical thiamin-requiring 3 ( th3 ) mutant is a point mutation in plastid localized 5-deoxyxylulose synthase 1 ( DXS1 ), a key regulated enzyme in the methylerythritol 4-phosphate (MEP) isoprene biosynthesis pathway. Substitution of a lysine for a highly conserved glutamate residue (E323) located at the subunit interface of the homodimeric enzyme conditions a hypomorphic phenotype that can be rescued by supplying low concentrations of thiamin in the medium. Analysis of leaf thiamin vitamers showed that supplementing the medium with thiamin increased total ThDP content in both wild type and th3 mutant plants, supporting a hypothesis that the mutant DXS1 enzyme has a reduced affinity for the ThDP cofactor. An unexpected upregulation of a suite of biotic-stress-response genes associated with accumulation of downstream MEP intermediate MEcPP suggests that th3 causes mis-regulation of DXS1 activity in thiamin-supplemented plants. Overall, these results highlight that the central role of ThDP availability in regulation of DXS1 activity and flux through the MEP pathway. 
    more » « less
  2. Hake, Sarah (Ed.)
    The plastochron, the time interval between the formation of two successive leaves, is an important determinant of plant architecture. We genetically and phenotypically investigated many-noded dwarf ( mnd ) mutants in barley. The mnd mutants exhibited a shortened plastochron and a decreased leaf blade length, and resembled previously reported plastochron1 ( pla1 ), pla2 , and pla3 mutants in rice. In addition, the maturation of mnd leaves was accelerated, similar to pla mutants in rice. Several barley mnd alleles were derived from three genes— MND1 , MND4 , and MND8 . Although MND4 coincided with a cytochrome P450 family gene that is a homolog of rice PLA1 , we clarified that MND1 and MND8 encode an N-acetyltransferase-like protein and a MATE transporter-family protein, which are respectively orthologs of rice GW6a and maize BIGE1 and unrelated to PLA2 or PLA3 . Expression analyses of the three MND genes revealed that MND1 and MND4 were expressed in limited regions of the shoot apical meristem and leaf primordia, but MND8 did not exhibit a specific expression pattern around the shoot apex. In addition, the expression levels of the three genes were interdependent among the various mutant backgrounds. Genetic analyses using the double mutants mnd4mnd8 and mnd1mnd8 indicated that MND1 and MND4 regulate the plastochron independently of MND8 , suggesting that the plastochron in barley is controlled by multiple genetic pathways involving MND1 , MND4 , and MND8 . Correlation analysis between leaf number and leaf blade length indicated that both traits exhibited a strong negative association among different genetic backgrounds but not in the same genetic background. We propose that MND genes function in the regulation of the plastochron and leaf growth and revealed conserved and diverse aspects of plastochron regulation via comparative analysis of barley and rice. 
    more » « less
  3. Summary The B vitamins provide essential co‐factors for central metabolism in all organisms. In plants, B vitamins have surprising emerging roles in development, stress tolerance and pathogen resistance. Hence, there is a paramount interest in understanding the regulation of vitamin biosynthesis as well as the consequences of vitamin deficiency in crop species. To facilitate genetic analysis of B vitamin biosynthesis and functions in maize, we have mined the UniformMu transposon resource to identify insertional mutations in vitamin pathway genes. A screen of 190 insertion lines for seed and seedling phenotypes identified mutations in biotin, pyridoxine and niacin biosynthetic pathways. Importantly, isolation of independent insertion alleles enabled genetic confirmation of genotype‐to‐phenotype associations. Because B vitamins are essential for survival, null mutations often have embryo lethal phenotypes that prevent elucidation of subtle, but physiologically important, metabolic consequences of sub‐optimal (functional) vitamin status. To circumvent this barrier, we demonstrate a strategy for refined genetic manipulation of vitamin status based on construction of heterozygotes that combine strong and hypomorphic mutant alleles. Dosage analysis ofpdx2alleles in endosperm revealed that endosperm supplies pyridoxine to the developing embryo. Similarly, a hypomorphicbio1allele enabled analysis of transcriptome and metabolome responses to incipient biotin deficiency in seedling leaves. We show that systemic pipecolic acid accumulation is an early metabolic response to sub‐optimal biotin status highlighting an intriguing connection between biotin, lysine metabolism and systemic disease resistance signaling. Seed‐stocks carrying insertions for vitamin pathway genes are available for free, public distribution via the Maize Genetics Cooperation Stock Center. 
    more » « less