skip to main content


Search for: All records

Creators/Authors contains: "Miotto, G. Lehmann"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Abstract A study of the charge conjugation and parity ( $$\textit{CP}$$ CP ) properties of the interaction between the Higgs boson and $$\tau $$ τ -leptons is presented. The study is based on a measurement of $$\textit{CP}$$ CP -sensitive angular observables defined by the visible decay products of $$\tau $$ τ -leptons produced in Higgs boson decays. The analysis uses 139 fb $$^{-1}$$ - 1 of proton–proton collision data recorded at a centre-of-mass energy of $$\sqrt{s}= 13$$ s = 13  TeV with the ATLAS detector at the Large Hadron Collider. Contributions from $$\textit{CP}$$ CP -violating interactions between the Higgs boson and $$\tau $$ τ -leptons are described by a single mixing angle parameter $$\phi _{\tau }$$ ϕ τ in the generalised Yukawa interaction. Without constraining the $$H\rightarrow \tau \tau $$ H → τ τ signal strength to its expected value under the Standard Model hypothesis, the mixing angle $$\phi _{\tau }$$ ϕ τ is measured to be $$9^{\circ } \pm 16^{\circ }$$ 9 ∘ ± 16 ∘ , with an expected value of $$0^{\circ } \pm 28^{\circ }$$ 0 ∘ ± 28 ∘ at the 68% confidence level. The pure $$\textit{CP}$$ CP -odd hypothesis is disfavoured at a level of 3.4 standard deviations. The results are compatible with the predictions for the Higgs boson in the Standard Model. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Abstract DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  $$\times $$ ×  6  $$\times $$ ×  6 m $$^3$$ 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019–2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties. 
    more » « less
  4. Abstract The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulation—the calorimeter shower simulation—with faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed to meet current and future computing challenges, and simulation needs of the ATLAS experiment. With highly accurate performance and significantly improved modelling of substructure within jets, AtlFast3 can simulate large numbers of events for a wide range of physics processes. 
    more » « less
  5. Abstract The accurate simulation of additional interactions at the ATLAS experiment for the analysis of proton–proton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run 2 (2015–2018), there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the inelastic interactions are presampled, independent of the hard scatter, and stored as combined events. Consequently, for each hard-scatter interaction, only one such presampled event needs to be added as part of the simulation chain. For the Run 2 simulation chain, with an average of 35 interactions per bunch crossing, this new method provides a substantial reduction in MC production CPU needs of around 20%, while reproducing the properties of the reconstructed quantities relevant for physics analyses with good accuracy. 
    more » « less
  6. Abstract A search for the Higgs boson decaying into a pair of charm quarks is presented. The analysis uses proton–proton collisions to target the production of a Higgs boson in association with a leptonically decaying W or Z boson. The dataset delivered by the LHC at a centre-of-mass energy of "Equation missing" and recorded by the ATLAS detector corresponds to an integrated luminosity of 139  $$\text{ fb}^{-1}$$ fb - 1 . Flavour-tagging algorithms are used to identify jets originating from the hadronisation of charm quarks. The analysis method is validated with the simultaneous measurement of WW ,  WZ and ZZ production, with observed (expected) significances of 2.6 (2.2) standard deviations above the background-only prediction for the $$(W/Z)Z(\rightarrow c{\bar{c}})$$ ( W / Z ) Z ( → c c ¯ ) process and 3.8 (4.6) standard deviations for the $$(W/Z)W(\rightarrow cq)$$ ( W / Z ) W ( → c q ) process. The $$(W/Z)H(\rightarrow c {\bar{c}})$$ ( W / Z ) H ( → c c ¯ ) search yields an observed (expected) upper limit of 26 (31) times the predicted Standard Model cross-section times branching fraction for a Higgs boson with a mass of "Equation missing" , corresponding to an observed (expected) constraint on the charm Yukawa coupling modifier $$|\kappa _c| < 8.5~(12.4)$$ | κ c | < 8.5 ( 12.4 ) , at the 95% confidence level. A combination with the ATLAS $$(W/Z)H, H\rightarrow b{\bar{b}}$$ ( W / Z ) H , H → b b ¯ analysis is performed, allowing the ratio $$\kappa _c / \kappa _b$$ κ c / κ b to be constrained to less than 4.5 at the 95% confidence level, smaller than the ratio of the b- and c-quark masses, and therefore determines the Higgs-charm coupling to be weaker than the Higgs-bottom coupling at the 95% confidence level. 
    more » « less
  7. null (Ed.)
    Abstract The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach. 
    more » « less
  8. Abstract The energy response of the ATLAS calorimeter is measured for single charged pions with transverse momentum in the range $$10 more » « less
  9. Abstract This paper presents a measurement of the electroweak production of two jets in association with a $$Z\gamma $$ Z γ pair, with the Z boson decaying into two neutrinos. It also presents a search for invisible or partially invisible decays of a Higgs boson with a mass of 125  $$\text {GeV}$$ GeV produced through vector-boson fusion with a photon in the final state. These results use data from LHC proton–proton collisions at $$\sqrt{s}$$ s = 13  $$\text {TeV}$$ TeV collected with the ATLAS detector and corresponding to an integrated luminosity of 139  $$\hbox {fb}^{-1}$$ fb - 1 . The event signature, shared by all benchmark processes considered for the measurements and searches, is characterized by a significant amount of unbalanced transverse momentum and a photon in the final state, in addition to a pair of forward jets. Electroweak $$Z\gamma $$ Z γ production in association with two jets is observed in this final state with a significance of 5.2 (5.1 expected) standard deviations. The measured fiducial cross-section for this process is $$1.31\pm 0.29$$ 1.31 ± 0.29  fb. An observed (expected) upper limit of 0.37 ( $$0.34^{+0.15}_{-0.10}$$ 0 . 34 - 0.10 + 0.15 ) at 95% confidence level is set on the branching ratio of a 125  $$\text {GeV}$$ GeV Higgs boson to invisible particles, assuming the Standard Model production cross-section. The signature is also interpreted in the context of decays of a Higgs boson into a photon and a dark photon. An observed (expected) 95% CL upper limit on the branching ratio for this decay is set at 0.018 ( $$0.017^{+0.007}_{-0.005}$$ 0 . 017 - 0.005 + 0.007 ), assuming the Standard Model production cross-section for a 125  $$\text {GeV}$$ GeV Higgs boson. 
    more » « less