skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mirocha, Jeffrey D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Mesoscale‐to‐microscale coupling is an important tool for conducting turbulence‐resolving multiscale simulations of realistic atmospheric flows, which are crucial for applications ranging from wind energy to wildfire spread studies. Different techniques are used to facilitate the development of realistic turbulence in the large‐eddy simulation (LES) domain while minimizing computational cost. Here, we explore the impact of a simple and computationally efficient Stochastic Cell Perturbation method using momentum perturbation (SCPM‐M) to accelerate turbulence generation in boundary‐coupled LES simulations using the Weather Research and Forecasting model. We simulate a convective boundary layer (CBL) to characterize the production and dissipation of turbulent kinetic energy (TKE) and the variation of TKE budget terms. Furthermore, we evaluate the impact of applying momentum perturbations of three magnitudes below, up to, and above the CBL on the TKE budget terms. Momentum perturbations greatly reduce the fetch associated with turbulence generation. When applied to half the vertical extent of the boundary layer, momentum perturbations produce an adequate amount of turbulence. However, when applied above the CBL, additional structures are generated at the top of the CBL, near the inversion layer. The magnitudes of the TKE budgets produced by SCPM‐M when applied at varying heights and with different perturbation amplitudes are always higher near the surface and inversion layer than those produced by No‐SCPM, as are their contributions to the TKE. This study provides a better understanding of how SCPM‐M reduces computational costs and how different budget terms contribute to TKE in a boundary‐coupled LES simulation. 
    more » « less
  2. Despite recent advances in both coupled fire modeling and measurement techniques to sample the fire environment, the fire–atmosphere coupling mechanisms that lead to fast propagating wildfires remain poorly understood. This knowledge gap adversely affects fire management when wildland fires propagate unexpectedly rapidly and shift direction due to the fire impacts on local wind conditions. In this work, we utilized observational data from the FireFlux2 prescribed burn and numerical simulations performed with a coupled fire–atmosphere model WRF-SFIRE to assess the small-scale impacts of fire on local micrometeorology under moderate wind conditions (10–12 m/s). The FireFlux2 prescribed burn provided a comprehensive observational dataset with in situ meteorological observations as well as IR measurements of fire progression. To directly quantify the effects of fire–atmosphere interactions, two WRF-SFIRE simulations were executed. One simulation was run in a two-way coupled mode in which the heat and moisture fluxes emitted from the fire were injected into the atmosphere, and the other simulation was performed in a one-way coupled mode for which the atmosphere was not affected by the fire. The difference between these two simulations was used to analyze and quantify the fire impacts on the atmospheric circulation at different sections of the fire front. The fire-released heat fluxes resulted in vertical velocities as high as 10.8 m/s at the highest measurement level (20 m above ground level) gradually diminishing with height and dropping to 7.9 m/s at 5.77 m. The fire-induced horizontal winds indicated the strongest fire-induced flow at the lowest measurement levels (as high as 3.3 m/s) gradually decreasing to less than 1 m/s at 20 m above ground level. The analysis of the simulated flow indicates significant differences between the fire-induced circulation at the fire head and on the flanks. The fire-induced circulation was much stronger near the fire head than at the flanks, where the fire did not produce particularly strong cross-fire flow and did not significantly change the lateral fire progression. However, at the head of the fire the fire-induced winds blowing across the front were the strongest and significantly accelerated fire progression. The two-way coupled simulation including the fire-induced winds produced 36.2% faster fire propagation than the one-way coupled run, and more realistically represented the fire progression. 
    more » « less
  3. Abstract This study investigated the sensitivity of pyrocumulonimbus (PyroCb) induced by the California Creek fire of 2020 to the amount and type of surface fuels, within the WRF‐SFIRE modeling system. Satellite data were used to derive fire arrival times to constrain fire progression, and to augment the fuel characterization with better estimates of combustible vegetation accounting for tree mortality. Machine learning was employed to classify standing dead vegetation from aerial imagery, which was then added as a custom fuel class along with the standard Anderson fuel categories. Simulations using this new fuel class produced a larger and more vigorous PyroCb than the control run, however, still under‐predicted the cloud top. Additional augmentation of fuel mass to represent the accumulation of dead vegetation on the forest floor further improved the simulations, demonstrating the efficacy of representing both dead standing and fallen vegetation to produce more realistic PyroCb and smoke simulations. 
    more » « less