skip to main content

Search for: All records

Creators/Authors contains: "Misra, Shikhar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thermal stability of oxide–metal nanocomposites is important for designing practical devices for high temperature applications. Here, we study the thermal stability of the self-assembled ordered three-phase Au–BaTiO 3 –ZnO nanocomposite by both ex situ annealing under air and vacuum conditions, and by in situ heating in TEM in a vacuum. The study reveals that the variation of the annealing conditions greatly affects the resulting microstructure and the associated dominant diffusion mechanism. Specifically, Au nanoparticles show coarsening upon air annealing, while Au and Zn either form a solid solution, with Zn atomic percentage less than 10%, or undergo a reverse Vapor–Liquid–Solid (VLS) mechanism upon vacuum annealing. The distinct microstructures obtained also show different permittivity response in the visible and near-infrared region, while retaining their hyperbolic dispersion characteristics enabled by their highly anisotropic structures. Such in situ heating study in TEM provides critical information about microstructure evolution, growth mechanisms at the nanoscale, and thermal stability of the multi-phase nanocomposites for future electronic device applications.
  2. A phase transition material, VO 2 , with a semiconductor-to-metal transition (SMT) near 341 K (68 °C) has attracted significant research interest because of drastic changes in its electrical resistivity and optical dielectric properties. To address its application needs at specific temperatures, tunable SMT temperatures are highly desired. In this work, effective transition temperature ( T c ) tuning of VO 2 has been demonstrated via a novel Pt : VO 2 nanocomposite design, i.e. , uniform Pt nanoparticles (NPs) embedded in the VO 2 matrix. Interestingly, a bidirectional tuning has been achieved, i.e. , the transition temperature can be systematically tuned to as low as 329.16 K or as high as 360.74 K, with the average diameter of Pt NPs increasing from 1.56 to 4.26 nm. Optical properties, including transmittance ( T %) and dielectric permittivity ( ε ′) were all effectively tuned accordingly. All Pt : VO 2 nanocomposite thin films maintain reasonable SMT properties, i.e. sharp phase transition and narrow width of thermal hysteresis. The bidirectional T c tuning is attributed to two factors: the reconstruction of the band structure at the Pt : VO 2 interface and the change of the Pt : VO 2 phase boundary density. This demonstration sheds light on phasemore »transition tuning of VO 2 at both room temperature and high temperature, which provides a promising approach for VO 2 -based novel electronics and photonics operating under specific temperatures.« less
  3. Ferromagnetic nanostructures with strong anisotropic properties are highly desired for their potential integration into spintronic devices. Several anisotropic candidates, such as CoFeB and Fe–Pt, have been previously proposed, but many of them have limitations such as patterning issues or thickness restrictions. In this work, Co–BaZrO 3 (Co–BZO) vertically aligned nanocomposite (VAN) films with tunable magnetic anisotropy and coercive field strength have been demonstrated to address this need. Such tunable magnetic properties are achieved through tuning the thickness of the Co–BZO VAN structures and the aspect ratio of the Co nanostructures, which can be easily integrated into spintronic devices. As a demonstration, we have integrated the Co–BZO VAN nanostructure into tunnel junction devices, which demonstrated resistive switching alluding to Co–BZO's immense potential for future spintronic devices.