Ni-SiOC nanocomposites maintain crystal-amorphous dual-phase nanostructures after high-temperature annealing at different temperatures (600 °C, 800 °C and 1000 °C), while the feature sizes of crystal Ni and amorphous SiOC increase with the annealing temperature. Corresponding to the dual-phase nanostructures, Ni-SiOC nanocomposites exhibit a high strength and good plastic flow stability. In this study, we conducted a He implantation in Ni-SiOC nanocomposites at 300 °C by in-situ transmission electron microscope (TEM) irradiation test. In-situ TEM irradiation revealed that both crystal Ni and amorphous SiOC maintain stability under He irradiation. The 600 °C annealed sample presents a better He irradiation resistance, as manifested by a smaller He-bubble size and lower density. Both the grain boundary and crystal-amorphous phase boundary act as a sink to absorb He and irradiation-induced defects in the Ni matrix. More importantly, amorphous SiOC ceramic is immune to He irradiation damage, contributing to the He irradiation resistance of Ni alloy.
more »
« less
Thermal stability of self-assembled ordered three-phase Au–BaTiO 3 –ZnO nanocomposite thin films via in situ heating in TEM
Thermal stability of oxide–metal nanocomposites is important for designing practical devices for high temperature applications. Here, we study the thermal stability of the self-assembled ordered three-phase Au–BaTiO 3 –ZnO nanocomposite by both ex situ annealing under air and vacuum conditions, and by in situ heating in TEM in a vacuum. The study reveals that the variation of the annealing conditions greatly affects the resulting microstructure and the associated dominant diffusion mechanism. Specifically, Au nanoparticles show coarsening upon air annealing, while Au and Zn either form a solid solution, with Zn atomic percentage less than 10%, or undergo a reverse Vapor–Liquid–Solid (VLS) mechanism upon vacuum annealing. The distinct microstructures obtained also show different permittivity response in the visible and near-infrared region, while retaining their hyperbolic dispersion characteristics enabled by their highly anisotropic structures. Such in situ heating study in TEM provides critical information about microstructure evolution, growth mechanisms at the nanoscale, and thermal stability of the multi-phase nanocomposites for future electronic device applications.
more »
« less
- PAR ID:
- 10226867
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 12
- Issue:
- 46
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 23673 to 23681
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the present study, thermal stability of α-Ga2O3 under vacuum and ambient pressure conditions was investigated in situ by x-ray diffraction and transmission electron microscopy (TEM). It was observed that the thermal stability of α-Ga2O3 increased by 200 °C when pressure was lowered from an atmospheric to a vacuum level. This finding can be explained by oxygen diffusion under different oxygen partial pressures. In addition, in situ TEM imaging revealed that, once past the decomposition temperature, the onset of phase change propagates from the top crystal surface and accumulates strain, eventually resulting in a fractural film. The mechanism of α-Ga2O3 to β-Ga2O3 transition is evaluated through experiments and is discussed in this manuscript.more » « less
-
The unique redox properties and high oxygen capacity of nanostructured CeO2demonstrate a wide range of applications, such as electrolytes for solid oxide fuel cells, gas sensors, and catalysis for automotive exhaust gas. Most CeO2nanomaterials are prepared by chemical synthesis or hard templating methods. An effective way to obtain highly textured, small‐radius dimensions with high specific surface area remains challenging. Here, highly textured CeO2nanostructures with various shapes ranging from nanowires to nanoporous thin films are successfully synthesized. Vertically aligned nanocomposites (VANs) of Sr3Al2O6(SAO) and CeO2are synthesized first while varying concentration ratio between them. Once the SAO is dissolved in water, the remaining CeO2forms distinct nanostructures. The thermal stability of the nanostructured CeO2is evaluated byin situheating XRD and thermal annealing tests. This method provides an alternative approach to preparing nanostructured CeO2without toxic chemical solutions or complex micro/nanofabrication techniques. These results present a novel approach to prepare nanostructured CeO2for future sensing and energy device applications.more » « less
-
Understanding the nucleation and growth mechanisms of highentropy alloy (HEA) nanoparticles is crucial for developing functional nanocrystals with tailored properties. This study investigates the thermal decomposition of mixed metal salt precursors (Fe, Ni, Pt, Ir, Ru) on reduced graphene oxide (rGO) using in situ transmission electron microscopy (TEM) when heated to 1000 °C at both slow (20 °C min−1) and fast (103 °C s−1) heating/cooling rates. Slow heating to 1000 °C revealed the following: (1) The nanoparticles' nucleation occurred through multistage decomposition at lower temperatures (250−300 °C) than single metal salt precursors (300−450 °C). (2) Pt-dominant nanocrystals autocatalytically reduced other elements, leading to the formation of multimetallic FeNiPtIrRu nanoparticles. (3) At 1000 °C, the nanoparticles were single-phase with noble metals enriched compared to transition metals. (4) Slow cooling induced structural heterogeneity and phase segregation due to element diffusion and thermodynamic miscibility. (5) Adding polyvinylpyrrolidone (PVP) suppressed segregation, promoting HEA nanoparticle formation even during slow cooling by limiting atomic diffusion. Under fast heating/cooling, nanoparticles formed as a solid solution of fcc HEA, indicating kinetic control and limited atomic diffusion. The density function theory (DFT) calculations illustrate that the simultaneous presence of metal elements on rGO, as expected by the fast heating process, favors the formation of an fcc HEA structure, with strong interactions between HEA nanoparticles and rGO enhancing stability. This study provides insights into how heating rates and additives like PVP can control phase composition, chemical homogeneity, and stability, enabling the rational design of complex nanomaterials for catalytic, energy, and functional applications.more » « less
-
Abstract A new optical delivery system has been developed for the (scanning) transmission electron microscope. Here we describe the in situ and “rapid ex situ ” photothermal heating modality of the system, which delivers >200 mW of optical power from a fiber-coupled laser diode to a 3.7 μ m radius spot on the sample. Selected thermal pathways can be accessed via judicious choices of the laser power, pulse width, number of pulses, and radial position. The long optical working distance mitigates any charging artifacts and tremendous thermal stability is observed in both pulsed and continuous wave conditions, notably, no drift correction is applied in any experiment. To demonstrate the optical delivery system’s capability, we explore the recrystallization, grain growth, phase separation, and solid state dewetting of a Ag 0.5 Ni 0.5 film. Finally, we demonstrate that the structural and chemical aspects of the resulting dewetted films was assessed.more » « less
An official website of the United States government

