skip to main content

Search for: All records

Creators/Authors contains: "Mitra, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2022
  2. Membrane processes are widely used in industrial applications such water purification, food processing and pharmaceutical manufacturing. During their operation, the accumulation of foulants in membrane pores and on membrane surfaces lead to the reduction in flux, membrane lifetime and increase in operational cost, and the understanding of the fouling phenomenon is important for mitigating these problems. In this paper we report the application of Raman chemical imaging as a means of identify and map foulants on a membrane surface. The surface of a Polytetrafluoroethylene (PTFE) membrane was studied by Raman chemical imaging before and after fouling during desalination via membrane distillation. Information about location and concentration of three different salts namely CaSO4, BaSO4 and CaCO3 was studied. The three salts showed different distribution patterns, and their distribution was analyzed by correlation mapping and multivariate curve resolution. It was observed that CaSO4 agglomerated in specific places while the BaSO4 and CaCO3 were more distributed. Raman imaging appears to be a powerful tool for studying membrane foulants and can be effective in identifying the distribution of different species on a membrane surface.
  3. A bstract A search is presented for a heavy W′ boson resonance decaying to a B or T vector-like quark and a t or a b quark, respectively. The analysis is performed using proton-proton collisions collected with the CMS detector at the LHC. The data correspond to an integrated luminosity of 138 fb − 1 at a center-of-mass energy of 13 TeV. Both decay channels result in a signature with a t quark, a Higgs or Z boson, and a b quark, each produced with a significant Lorentz boost. The all-hadronic decays of the Higgs or Z boson and of the t quark are selected using jet substructure techniques to reduce standard model backgrounds, resulting in a distinct three-jet W′ boson decay signature. No significant deviation in data with respect to the standard model background prediction is observed. Upper limits are set at 95% confidence level on the product of the W′ boson cross section and the final state branching fraction. A W′ boson with a mass below 3.1 TeV is excluded, given the benchmark model assumption of democratic branching fractions. In addition, limits are set based on generalizations of these assumptions. These are the most sensitive limits to datemore »for this final state.« less
    Free, publicly-accessible full text available September 1, 2023
  4. Free, publicly-accessible full text available August 1, 2023
  5. Free, publicly-accessible full text available August 1, 2023
  6. Free, publicly-accessible full text available August 1, 2023