skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pajic, Miroslav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 5, 2026
  2. We calculate the electrical conductivity of suspended and supported monolayer MoS2 at terahertz (THz) frequencies by means of EMC–FDTD, a multiphysics simulation tool combining an ensemble Monte Carlo (EMC) solver for electron transport and a finite-difference time-domain (FDTD) solver for full-wave electrodynamics. We investigate the role of carrier and impurity densities, as well as substrate choice (SiO2 or hexagonal boron nitride, hBN), in frequency-dependent electronic transport. Owing to the dominance of surface-optical-phonon scattering, MoS2 on SiO2 has the lowest static conductivity, but also the weakest overall frequency dependence of the conductivity. In fact, at high THz frequencies, the conductivity of MoS2 on SiO2 exceeds that of either suspended or hBN-supported MoS2. We extract the parameters for Drude-model fits to the conductivity versus frequency curves obtained from microscopic simulation, which may aid in the experimental efforts toward MoS2 THz applications. 
    more » « less
  3. Membrane processes are widely used in industrial applications such water purification, food processing and pharmaceutical manufacturing. During their operation, the accumulation of foulants in membrane pores and on membrane surfaces lead to the reduction in flux, membrane lifetime and increase in operational cost, and the understanding of the fouling phenomenon is important for mitigating these problems. In this paper we report the application of Raman chemical imaging as a means of identify and map foulants on a membrane surface. The surface of a Polytetrafluoroethylene (PTFE) membrane was studied by Raman chemical imaging before and after fouling during desalination via membrane distillation. Information about location and concentration of three different salts namely CaSO4, BaSO4 and CaCO3 was studied. The three salts showed different distribution patterns, and their distribution was analyzed by correlation mapping and multivariate curve resolution. It was observed that CaSO4 agglomerated in specific places while the BaSO4 and CaCO3 were more distributed. Raman imaging appears to be a powerful tool for studying membrane foulants and can be effective in identifying the distribution of different species on a membrane surface. 
    more » « less
  4. null (Ed.)
  5. Abstract Despite the f0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ ) meson, a tetraquark ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ q q ¯ ) exotic state, a kaon-antikaon ($${{\rm{K}}}\overline{{{\rm{K}}}}$$ K K ¯ ) molecule, or a quark-antiquark-gluon ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ q q ¯ g ) hybrid. This paper reports strong evidence that the f0(980) state is an ordinary$${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ meson, inferred from the scaling of elliptic anisotropies (v2) with the number of constituent quarks (nq), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0(980) state is reconstructed via its dominant decay channel f0(980) →π+π, in proton-lead collisions recorded by the CMS experiment at the LHC, and itsv2is measured as a function of transverse momentum (pT). It is found that thenq= 2 ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ state) hypothesis is favored overnq= 4 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ q q ¯ or$${{\rm{K}}}\overline{{{\rm{K}}}}$$ K K ¯ states) by 7.7, 6.3, or 3.1 standard deviations in thepT< 10, 8, or 6 GeV/cranges, respectively, and overnq= 3 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ q q ¯ g hybrid state) by 3.5 standard deviations in thepT< 8 GeV/crange. This result represents the first determination of the quark content of the f0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  6. We present a measurement of the branching fraction and fraction of longitudinal polarization of B 0 ρ + ρ decays, which have two π 0 ’s in the final state. We also measure time-dependent C P violation parameters for decays into longitudinally polarized ρ + ρ pairs. This analysis is based on a data sample containing ( 387 ± 6 ) × 10 6 ϒ ( 4 S ) mesons collected with the Belle II detector at the SuperKEKB asymmetric-energy e + e collider in 2019–2022. We obtain B ( B 0 ρ + ρ ) = ( 2.8 9 0.22 + 0.23 0.27 + 0.29 ) × 10 5 , f L = 0.92 1 0.025 + 0.024 0.015 + 0.017 , S = 0.26 ± 0.19 ± 0.08 , and C = 0.02 ± 0.1 2 0.05 + 0.06 , where the first uncertainties are statistical and the second are systematic. We use these results to perform an isospin analysis to constrain the Cabibbo-Kobayashi-Maskawa angle ϕ 2 and obtain two solutions; the result consistent with other Standard Model constraints is ϕ 2 = ( 92.6 4.7 + 4.5 ) ° . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  7. A<sc>bstract</sc> We perform the first search forCPviolation in$$ {D}_{(s)}^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ D s + K S 0 K π + π + decays. We use a combined data set from the Belle and Belle II experiments, which studye+ecollisions at center-of-mass energies at or near the Υ(4S) resonance. We use 980 fb−1of data from Belle and 428 fb−1of data from Belle II. We measure sixCP-violating asymmetries that are based on triple products and quadruple products of the momenta of final-state particles, and also the particles’ helicity angles. We obtain a precision at the level of 0.5% for$$ {D}^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ D + K S 0 K π + π + decays, and better than 0.3% for$$ {D}_s^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ D s + K S 0 K π + π + decays. No evidence ofCPviolation is found. Our results for the triple-product asymmetries are the most precise to date for singly-Cabibbo-suppressedD+decays. Our results for the other asymmetries are the first such measurements performed for charm decays. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  8. A<sc>bstract</sc> Using data samples of 983.0 fb−1and 427.9 fb−1accumulated with the Belle and Belle II detectors operating at the KEKB and SuperKEKB asymmetric-energye+ecolliders, singly Cabibbo-suppressed decays$$ {\Xi}_c^{+}\to p{K}_S^0 $$ Ξ c + p K S 0 ,$$ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $$ Ξ c + Λ π + , and$$ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $$ Ξ c + Σ 0 π + are observed for the first time. The ratios of branching fractions of$$ {\Xi}_c^{+}\to p{K}_S^0 $$ Ξ c + p K S 0 ,$$ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $$ Ξ c + Λ π + , and$$ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $$ Ξ c + Σ 0 π + relative to that of$$ {\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+} $$ Ξ c + Ξ π + π + are measured to be$$ {\displaystyle \begin{array}{c}\frac{\mathcal{B}\left({\Xi}_c^{+}\to p{K}_S^0\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(2.47\pm 0.16\pm 0.07\right)\%,\\ {}\frac{\mathcal{B}\left({\Xi}_c^{+}\to \Lambda {\pi}^{+}\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(1.56\pm 0.14\pm 0.09\right)\%,\\ {}\frac{\mathcal{B}\left({\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+}\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(4.13\pm 0.26\pm 0.22\right)\%.\end{array}} $$ B Ξ c + p K S 0 B Ξ c + Ξ π + π + = 2.47 ± 0.16 ± 0.07 % , B Ξ c + Λ π + B Ξ c + Ξ π + π + = 1.56 ± 0.14 ± 0.09 % , B Ξ c + Σ 0 π + B Ξ c + Ξ π + π + = 4.13 ± 0.26 ± 0.22 % . Multiplying these values by the branching fraction of the normalization channel,$$ \mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)=\left(2.9\pm 1.3\right)\% $$ B Ξ c + Ξ π + π + = 2.9 ± 1.3 % , the absolute branching fractions are determined to be$$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^{+}\to p{K}_S^0\right)=\left(7.16\pm 0.46\pm 0.20\pm 3.21\right)\times {10}^{-4},\\ {}\mathcal{B}\left({\Xi}_c^{+}\to \Lambda {\pi}^{+}\right)=\left(4.52\pm 0.41\pm 0.26\pm 2.03\right)\times {10}^{-4},\\ {}\mathcal{B}\left({\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+}\right)=\left(1.20\pm 0.08\pm 0.07\pm 0.54\right)\times {10}^{-3}.\end{array}} $$ B Ξ c + p K S 0 = 7.16 ± 0.46 ± 0.20 ± 3.21 × 10 4 , B Ξ c + Λ π + = 4.52 ± 0.41 ± 0.26 ± 2.03 × 10 4 , B Ξ c + Σ 0 π + = 1.20 ± 0.08 ± 0.07 ± 0.54 × 10 3 . The first and second uncertainties above are statistical and systematic, respectively, while the third ones arise from the uncertainty in$$ \mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right) $$ B Ξ c + Ξ π + π +
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  9. We measure the branching fraction and C P -violating flavor-dependent rate asymmetry of B 0 π 0 π 0 decays reconstructed using the Belle II detector in an electron-positron collision sample containing 387 × 10 6 ϒ ( 4 S ) mesons. Using an optimized event selection, we find 125 ± 20 signal decays in a fit to background-discriminating and flavor-sensitive distributions. The resulting branching fraction is ( 1.25 ± 0.23 ) × 10 6 and the C P -violating asymmetry is 0.03 ± 0.30 . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026