Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Vision-based formation control systems are attractive because they can use inexpensive sensors and can work in GPS-denied environments. The safety assurance for such systems is challenging: the vision component’s accuracy depends on the environment in complicated ways, these errors propagate through the system and lead to incorrect control actions, and there exists no formal specification for end-to-end reasoning. We address this problem and propose a technique for safety assurance of vision-based formation control: First, we propose a scheme for constructing quantizers that are consistent with vision-based perception. Next, we show how the convergence analysis of a standard quantized consensus algorithm can be adapted for the constructed quantizers. We use the recently defined notion of perception contracts to create error bounds on the actual vision-based perception pipeline using sampled data from different ground truth states, environments, and weather conditions. Specifically, we use a quantizer in logarithmic polar coordinates, and we show that this quantizer is suitable for the constructed perception contracts for the vision-based position estimation, where the error worsens with respect to the absolute distance between agents. We build our formation control algorithm with this nonuniform quantizer, and we prove its convergence employing an existing result for quantized consensus.more » « lessFree, publicly-accessible full text available July 17, 2025
-
We introduce a novel notion of perception contracts to reason about the safety of controllers that interact with an environment using neural perception. Perception contracts capture errors in ground-truth estimations that preserve invariants when systems act upon them. We develop a theory of perception contracts and design symbolic learning algorithms for synthesizing them from a finite set of images. We implement our algorithms and evaluate synthesized perception contracts for two realistic vision-based control systems, a lane tracking system for an electric vehicle and an agricultural robot that follows crop rows. Our evaluation shows that our approach is effective in synthesizing perception contracts and generalizes well when evaluated over test images obtained during runtime monitoring of the systems.
-
Multi-player games with lexicographic cost functions can capture a variety of driving and racing scenarios and are known to have pure-strategy Nash Equilibria (NE) under certain conditions. The standard Iterated Best Response (IBR) procedure for finding such equilibria can be slow because computing the best response for each agent generally involves solving a non-convex optimization problem. In this paper, we introduce a type of game which uses a lexicographic cost function. We show that for this class of games, the best responses can be effectively computed through piece-wise linear approximations. This enables us to approximate the NE using a linearized version of IBR. We show the gap between the linear approximations returned by our linearized IBR and the true best response drops asymptotically. We implement the algorithm and show that it can find approximate NE for a handful of agents driving in realistic scenarios in under 10 seconds.more » « less
-
The key concept for safe and efficient traffic management for Unmanned Aircraft Systems (UAS) is the notion of operation volume (OV). An OV is a 4-dimensional block of airspace and time, which can express an aircraft’s intent, and can be used for planning, de-confliction, and traffic management. While there are several high-level simulators for UAS Traffic Management (UTM), we are lacking a frame- work for creating, manipulating, and reasoning about OVs for heterogeneous air vehicles. In this paper, we address this and present SkyTrakx—a software toolkit for simulation and verification of UTM scenarios based on OVs. First, we illustrate a use case of SkyTrakx by presenting a specific air traffic coordination protocol. This protocol communicates OVs between participating aircraft and an airspace manager for traffic routing. We show how existing formal verification tools, Dafny and Dione, can assist in automatically checking key properties of the protocol. Second, we show how the OVs can be computed for heterogeneous air vehicles like quadcopters and fixed-wing aircraft using another verification technique, namely reachability analysis. Finally, we show that SkyTrakx can be used to simulate complex scenarios involving heterogeneous vehicles, for testing and performance evaluation in terms of workload and response delays analysis. Our experiments delineate the trade-off between performance and workload across different strategies for generating OVs.more » « less
-
null (Ed.)Modeling is a significant piece of the puzzle in achieving safety certificates for distributed IoT and cyberphysical systems. From smart home devices to connected and autonomous vehicles, several modeling challenges like dynamic membership of participants and complex interaction patterns, span across application domains. Modeling multiple interacting vehicles can become unwieldy and impractical as vehicles change relative positions and lanes. In this paper, we present an egocentric abstraction for succinctly modeling local interactions among an arbitrary number of agents around an ego agent. These models abstract away the detailed behavior of the other agents and ignore present but physically distant agents. We show that this approach can capture interesting scenarios considered in the responsibility sensitive safety (RSS) framework for autonomous vehicles. As an illustration of how the framework can be useful for analysis, we prove safety of several highway driving scenarios using egocentric models. The proof technique also brings to the forefront the power of a classical verification approach, namely, inductive invariant assertions. We discuss possible generalizations of the analysis to other scenarios and applications.more » « less
-
Self-driving autonomous vehicles (AVs) have recently gained popularity as a research topic. The safety of AVs is exceptionally important as failure in the design of an AV could lead to catastrophic consequences. AV systems are highly heterogeneous with many different and complex components, so it is difficult to perform end-to-end testing. One solution to this dilemma is to evaluate AVs using simulated racing competition. In this thesis, we present a simulated autonomous racing competition, Generalized RAcing Intelligence Competition (GRAIC). To compete in GRAIC, participants need to submit their controller files which are deployed on a racing ego-vehicle on different race tracks. To evaluate the submitted controller, we also developed a testing pipeline, Autonomous System Operations (AutOps). AutOps is an automated, scalable, and fair testing pipeline developed using software engineering techniques such as continuous integration, containerization, and serverless computing. In order to evaluate the submitted controller in non-trivial circumstances, we populate the race tracks with scenarios, which are pre-defined traffic situations commonly seen in the real road. We present a dynamic scenario testing strategy that generates new scenarios based on results of the ego-vehicle passing through previous scenarios.more » « less