skip to main content

Title: SkyTrakx: A Toolkit for Simulation and Verification of Unmanned Air-Traffic Management Systems
The key concept for safe and efficient traffic management for Unmanned Aircraft Systems (UAS) is the notion of operation volume (OV). An OV is a 4-dimensional block of airspace and time, which can express an aircraft’s intent, and can be used for planning, de-confliction, and traffic management. While there are several high-level simulators for UAS Traffic Management (UTM), we are lacking a frame- work for creating, manipulating, and reasoning about OVs for heterogeneous air vehicles. In this paper, we address this and present SkyTrakx—a software toolkit for simulation and verification of UTM scenarios based on OVs. First, we illustrate a use case of SkyTrakx by presenting a specific air traffic coordination protocol. This protocol communicates OVs between participating aircraft and an airspace manager for traffic routing. We show how existing formal verification tools, Dafny and Dione, can assist in automatically checking key properties of the protocol. Second, we show how the OVs can be computed for heterogeneous air vehicles like quadcopters and fixed-wing aircraft using another verification technique, namely reachability analysis. Finally, we show that SkyTrakx can be used to simulate complex scenarios involving heterogeneous vehicles, for testing and performance evaluation in terms of workload and response delays analysis. Our more » experiments delineate the trade-off between performance and workload across different strategies for generating OVs. « less
Authors:
; ; ; ;
Award ID(s):
1544901 2008883
Publication Date:
NSF-PAR ID:
10313892
Journal Name:
EEE International Intelligent Transportation Systems Conference (ITSC)
Sponsoring Org:
National Science Foundation
More Like this
  1. With increasing urban population, there is global interest in Urban Air Mobility (UAM), where hundreds of autonomous Unmanned Aircraft Systems (UAS) execute missions in the airspace above cities. Unlike traditional human-inthe-loop air traffic management, UAM requires decentralized autonomous approaches that scale for an order of magnitude higher aircraft densities and are applicable to urban settings. We present Learning-to-Fly (L2F), a decentralized on-demand airborne collision avoidance framework for multiple UAS that allows them to independently plan and safely execute missions with spatial, temporal and reactive objectives expressed using Signal Temporal Logic. We formulate the problem of predictively avoiding collisions between two UAS without violating mission objectives as a Mixed Integer Linear Program (MILP). This however is intractable to solve online. Instead, we develop L2F, a two-stage collision avoidance method that consists of: 1) a learning-based decision-making scheme and 2) a distributed, linear programming-based UAS control algorithm. Through extensive simulations, we show the real-time applicability of our method which is ≈6000× faster than the MILP approach and can resolve 100% of collisions when there is ample room to maneuver, and shows graceful degradation in performance otherwise. We also compare L2F to two other methods and demonstrate an implementation on quad-rotor robots.
  2. Urban Air Mobility, the scenario where hundreds of manned and Unmanned Aircraft Systems (UASs) carry out a wide variety of missions (e.g., moving humans and goods within the city), is gaining acceptance as a transportation solution of the future. One of the key requirements for this to happen is safely managing the air traffic in these urban airspaces. Due to the expected density of the airspace, this requires fast autonomous solutions that can be deployed online. We propose Learning-‘N-Flying (LNF), a multi-UAS Collision Avoidance (CA) framework. It is decentralized, works on the fly, and allows autonomous Unmanned Aircraft System (UAS)s managed by different operators to safely carry out complex missions, represented using Signal Temporal Logic, in a shared airspace. We initially formulate the problem of predictive collision avoidance for two UASs as a mixed-integer linear program, and show that it is intractable to solve online. Instead, we first develop Learning-to-Fly (L2F) by combining (1) learning-based decision-making and (2) decentralized convex optimization-based control. LNF extends L2F to cases where there are more than two UASs on a collision path. Through extensive simulations, we show that our method can run online (computation time in the order of milliseconds) and under certain assumptionsmore »has failure rates of less than 1% in the worst case, improving to near 0% in more relaxed operations. We show the applicability of our scheme to a wide variety of settings through multiple case studies.« less
  3. This paper develops a decision framework to automate the playbook for UAS traffic management (UTM) under uncertain environmental conditions based on spatiotemporal scenario data. Motivated by the traditional air traffic management (ATM) which uses the playbook to guide traffic using pre-validated routes under convective weather, the proposed UTM playbook leverages a database to store optimal UAS routes tagged with spatiotemporal wind scenarios to automate the UAS trajectory management. Our perspective is that the UASs, and many other modern systems, operate in spatiotemporally evolving environments, and similar spatiotemporal scenarios are tied with similar management decisions. Motivated by this feature, our automated playbook solution integrates the offline operations, online operations and a database to enable real-time UAS trajectory management decisions. The solution features the use of similarity between spatiotemporal scenarios to retrieve offline decisions as the initial solution for online fine tuning, which significantly shortens the online decision time. A fast query algorithm that exploits the correlation of spatiotemporal scenarios is utilized in the decision framework to quickly retrieve the best offline decisions. The online fine tuning adapts to trajectory deviations and subject to collision avoidance among UASs. The solution is demonstrated using simulation studies, and can be utilized in other applications,more »where quick decisions are desired and spatiotemporal environments play a crucial role in the decision process.« less
  4. Command and control (C2) data links over cellular networks is envisioned to be a reliable communications modality for various types of missions for Unmanned Aircraft System (UAS). The planning of UAS traffic and the provision of cellular communication resources are cross-coupled decisions that should be analyzed together to understand the quality of service such a modality can provide that meets business needs. The key to effective planning is the accurate estimation of communication link quality and the resource usage for a given air traffic requirement. In this work, a simulation and modelling framework is developed that integrates two open-source simulation platforms, Repast Simphony and ns-3, to generate UAS missions over different geographical areas and simulates the provision of 4G/5G cellular network connectivity to support their C2 and mission data links. To the best of our knowledge, this is the first simulator that co-simulates air traffic and cellular network communications for UAS while leveraging standardized 3GPP propagation models and incorporating detailed management of communication channels (i.e., resource blocks) at the cellular base station level. Three experiments were executed to demonstrate how the integrated simulation platform can be used to provide guidelines in communication resource allocation, air traffic management, and mission safetymore »management in beyond visual line of sight (BVLOS) operations.« less
  5. This paper introduces a probabilistic risk assessment (PRA) framework for the path planning to quantify the risk of unmanned aircraft systems’ (UAS) operations to the ground over populated areas. The proposed framework is designed to be flexible enough to address multiple concerns and objectives by utilizing the probabilistic risk exposure map (PREM) of the area of operation and UAS failure mode analysis with corresponding impact probability distributions on the ground. PREM is defined to be the risk of exposure of people or property on the ground to the presence of UAS in the air as a function of position, and itis used to model the distribution of risk exposure over the map. In this study, PREM isconstructed for the impact related risk conditions where their distributions are modeled as a mixture of bivariate normal distributions over the discretized map of the area. Along with PREM, UAS failure modes with ground impact distributions are used in the derivation of the risk function to quantify the risk of being hit by the failing UAS platform for bystanders, properties and the traffic on the ground. Then, utilizing the derived risk function as a planning cost function, the path planner algorithm is used tomore »plan a path that minimizes the risk according to the proposed risk assessment framework. As a pathplanner, optimal bidirectional rapidly-exploring random trees (RRT) is selected due to its fast convergence and optimality guarantee. Finally, the results of simulations for different scenarios are compared and discussed in detail.« less