skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Miyatake, Hironao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present posterior sample redshift distributions for the Hyper Suprime-Cam Subaru Strategic Program Weak Lensing three-year (HSC Y3) analysis. Using the galaxies’ photometry and spatial cross-correlations, we conduct a combined Bayesian Hierarchical Inference of the sample redshift distributions. The spatial cross-correlations are derived using a subsample of Luminous Red Galaxies (LRGs) with accurate redshift information available up to a photometric redshift of z < 1.2. We derive the photometry-based constraints using a combination of two empirical techniques calibrated on spectroscopic and multiband photometric data that cover a spatial subset of the shear catalogue. The limited spatial coverage induces a cosmic variance error budget that we include in the inference. Our cross-correlation analysis models the photometric redshift error of the LRGs to correct for systematic biases and statistical uncertainties. We demonstrate consistency between the sample redshift distributions derived using the spatial cross-correlations, the photometry, and the posterior of the combined analysis. Based on this assessment, we recommend conservative priors for sample redshift distributions of tomographic bins used in the three-year cosmological Weak Lensing analyses. 
    more » « less
  2. Abstract We present the Local Volume Complete Cluster Survey (LoVoCCS; we pronounce it as “low-vox” or “law-vox,” with stress on the second syllable), an NSF’s National Optical-Infrared Astronomy Research Laboratory survey program that uses the Dark Energy Camera to map the dark matter distribution and galaxy population in 107 nearby (0.03 <z< 0.12) X-ray luminous ([0.1–2.4 keV]LX500> 1044erg s−1) galaxy clusters that are not obscured by the Milky Way. The survey will reach Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1–2 depth (for galaxiesr= 24.5,i= 24.0, signal-to-noise ratio (S/N) > 20;u= 24.7,g= 25.3,z= 23.8, S/N > 10) and conclude in ∼2023 (coincident with the beginning of LSST science operations), and will serve as a zeroth-year template for LSST transient studies. We process the data using the LSST Science Pipelines that include state-of-the-art algorithms and analyze the results using our own pipelines, and therefore the catalogs and analysis tools will be compatible with the LSST. We demonstrate the use and performance of our pipeline using three X-ray luminous and observation-time complete LoVoCCS clusters: A3911, A3921, and A85. A3911 and A3921 have not been well studied previously by weak lensing, and we obtain similar lensing analysis results for A85 to previous studies. (We mainly use A3911 to show our pipeline and give more examples in the Appendix.) 
    more » « less
  3. ABSTRACT We simulate the scientific performance of the Nancy Grace Roman Space Telescope High Latitude Survey (HLS) on dark energy and modified gravity. The 1.6-yr HLS Reference survey is currently envisioned to image 2000 deg2 in multiple bands to a depth of ∼26.5 in Y, J, H and to cover the same area with slit-less spectroscopy beyond z = 3. The combination of deep, multiband photometry and deep spectroscopy will allow scientists to measure the growth and geometry of the Universe through a variety of cosmological probes (e.g. weak lensing, galaxy clusters, galaxy clustering, BAO, Type Ia supernova) and, equally, it will allow an exquisite control of observational and astrophysical systematic effects. In this paper, we explore multiprobe strategies that can be implemented, given the telescope’s instrument capabilities. We model cosmological probes individually and jointly and account for correlated systematics and statistical uncertainties due to the higher order moments of the density field. We explore different levels of observational systematics for the HLS survey (photo-z and shear calibration) and ultimately run a joint likelihood analysis in N-dim parameter space. We find that the HLS reference survey alone can achieve a standard dark energy FoM of >300 when including all probes. This assumes no information from external data sets, we assume a flat universe however, and includes realistic assumptions for systematics. Our study of the HLS reference survey should be seen as part of a future community-driven effort to simulate and optimize the science return of the Roman Space Telescope. 
    more » « less
  4. ABSTRACT We explore synergies between the Nancy Grace Roman Space Telescope and the Vera Rubin Observatory’s Legacy Survey of Space and Time (LSST). Specifically, we consider scenarios where the currently envisioned survey strategy for the Roman Space Telescope’s High Latitude Survey (HLS reference), i.e. 2000 deg2 in four narrow photometric bands is altered in favour of a strategy of rapid coverage of the LSST area (to full LSST depth) in one band. We find that in only five months, a survey in the W-band can cover the full LSST survey area providing high-resolution imaging for >95 per cent of the LSST Year 10 gold galaxy sample. We explore a second, more ambitious scenario where the Roman Space Telescope spends 1.5 yr covering the LSST area. For this second scenario, we quantify the constraining power on dark energy equation-of-state parameters from a joint weak lensing and galaxy clustering analysis. Our survey simulations are based on the Roman Space Telescope exposure-time calculator and redshift distributions from the CANDELS catalogue. Our statistical uncertainties account for higher order correlations of the density field, and we include a wide range of systematic effects, such as uncertainties in shape and redshift measurements, and modelling uncertainties of astrophysical systematics, such as galaxy bias, intrinsic galaxy alignment, and baryonic physics. We find a significant increase in constraining power for the joint LSST + HLS wide survey compared to LSST Y10 (FoMHLSwide = 2.4 FoMLSST) and compared to LSST + HLS (FoMHLSwide = 5.5 FoMHLSref). 
    more » « less
  5. null (Ed.)
    Abstract We present measurements of cosmic shear two-point correlation functions (TPCFs) from Hyper Suprime-Cam Subaru Strategic Program (HSC) first-year data, and derive cosmological constraints based on a blind analysis. The HSC first-year shape catalog is divided into four tomographic redshift bins ranging from $z=0.3$ to 1.5 with equal widths of $$\Delta z =0.3$$. The unweighted galaxy number densities in each tomographic bin are 5.9, 5.9, 4.3, and $$2.4\:$$arcmin$$^{-2}$$ from the lowest to highest redshifts, respectively. We adopt the standard TPCF estimators, $$\xi _\pm$$, for our cosmological analysis, given that we find no evidence of significant B-mode shear. The TPCFs are detected at high significance for all 10 combinations of auto- and cross-tomographic bins over a wide angular range, yielding a total signal-to-noise ratio of 19 in the angular ranges adopted in the cosmological analysis, $$7^{\prime }<\theta <56^{\prime }$$ for $$\xi _+$$ and $$28^{\prime }<\theta <178^{\prime }$$ for $$\xi _-$$. We perform the standard Bayesian likelihood analysis for cosmological inference from the measured cosmic shear TPCFs, including contributions from intrinsic alignment of galaxies as well as systematic effects from PSF model errors, shear calibration uncertainty, and source redshift distribution errors. We adopt a covariance matrix derived from realistic mock catalogs constructed from full-sky gravitational lensing simulations that fully account for survey geometry and measurement noise. For a flat $$\Lambda$$ cold dark matter model, we find $$S\,_8 \equiv \sigma _8\sqrt{\Omega _{\rm m}/0.3}=0.804_{-0.029}^{+0.032}$$, and $$\Omega _{\rm m}=0.346_{-0.100}^{+0.052}$$. We carefully check the robustness of the cosmological results against astrophysical modeling uncertainties and systematic uncertainties in measurements, and find that none of them has a significant impact on the cosmological constraints. 
    more » « less