Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This article examines 152 reports the use of robots explicitly due to the COVID-19 pandemic reported in the science, trade, and press from 24 Jan 2021 to 23 Jan 2022 (Year 2) and compares with the previously published uses from 24 Jan 2020 to 23 Jan 2021 (Year 1). Of these 152 reports, 80 were new unique instances documented in 25 countries, bringing the total to 420 instances in 52 countries since 2020. The instances did not add new work domains or use cases, though they changed the relative ranking of three use cases. The most notable trend in Year was the shift from a) government or institutional use of robots to protect healthcare workers and the Public to b) personal and business use to enable the continuity of work and education. In Year 1, Public Safety, Clinical Care, and Continuity of Work and Education were the three highest work domains but in Year 2, Continuity of Work and Education had the highest number of instances.more » « less
-
Emergency response (ER) workers perform extremely demanding physical and cognitive tasks that can result in serious injuries and loss of life. Human augmentation technologies have the potential to enhance physical and cognitive work-capacities, thereby dramatically transforming the landscape of ER work, reducing injury risk, improving ER, as well as helping attract and retain skilled ER workers. This opportunity has been significantly hindered by the lack of high-quality training for ER workers that effectively integrates innovative and intelligent augmentation solutions. Hence, new ER learning environments are needed that are adaptive, affordable, accessible, and continually available for reskilling the ER workforce as technological capabilities continue to improve. This article presents the research considerations in the design and integration of use-inspired exoskeletons and augmented reality technologies in ER processes and the identification of unique cognitive and motor learning needs of each of these technologies in context-independent and ER-relevant scenarios. We propose a human-centered artificial intelligence (AI) enabled training framework for these technologies in ER. Finally, how these human-centered training requirements for nascent technologies are integrated in an intelligent tutoring system that delivers across tiered access levels, covering the range of virtual, to mixed, to physical reality environments, is discussed.more » « less
-
ObjectiveWe aimed to identify opportunities for application of human factors knowledge base to mitigate disaster management (DM) challenges associated with the unique characteristics of the COVID-19 pandemic. BackgroundThe role of DM is to minimize and prevent further spread of the contagion over an extended period of time. This requires addressing large-scale logistics, coordination, and specialized training needs. However, DM-related challenges during the pandemic response and recovery are significantly different than with other kinds of disasters. MethodAn expert review was conducted to document issues relevant to human factors and ergonomics (HFE) in DM. ResultsThe response to the COVID-19 crisis has presented complex and unique challenges to DM and public health practitioners. Compared to other disasters and previous pandemics, the COVID-19 outbreak has had an unprecedented scale, magnitude, and propagation rate. The high technical complexity of response and DM coupled with lack of mental model and expertise to respond to such a unique disaster has seriously challenged the response work systems. Recent research has investigated the role of HFE in modeling DM systems’ characteristics to improve resilience, accelerating emergency management expertise, developing agile training methods to facilitate dynamically changing response, improving communication and coordination among system elements, mitigating occupational hazards including guidelines for the design of personal protective equipment, and improving procedures to enhance efficiency and effectiveness of response efforts. ConclusionThis short review highlights the potential for the field’s contribution to proactive and resilient DM for the ongoing and future pandemics.more » « less
An official website of the United States government
