Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The southern Appalachians record three Paleozoic collisional events, including the Taconic (Ordovician), Neoacadian (Devonian-Mississippian), and Alleghanian (Carboniferous-Permian) orogenies. The complex nature of thermal and structural overprinting related to these events, coupled with a lack of widespread modern geo-, thermo-, and petrochronologic studies here has limited our ability to unravel the precise timing, spatial extent, and conditions of Paleozoic deformation and metamorphism. In the Blue Ridge (BR) and Inner Piedmont (IP) of Tennessee, North Carolina, and Georgia, which represents the orogenic core of the composite southern Appalachians, new monazite laser ablation split stream (LASS) analyses, amphibole 40Ar/39Ar dates, and metamorphic phase equilibria models are integrated with pre-existing geo- and thermochronology data to test holistic models of Paleozoic orogenesis. In the BR west of the Brevard fault zone (BFZ), monazite U-Pb dates are 459-441 Ma and are related to a pronounced Taconic metamorphic peak (to upper amphibolite facies) during development of an eastern Laurentian subduction-accretionary complex, followed by exhumation and cooling during later Neoacadian and Alleghanian thrust stacking, indicated by thermochronologic data. In the BFZ and the IP to the east, monazite U-Pb dates range from 373-356 Ma and delimit the timing of peak Neoacadian kyanite-sillimanite II metamorphism in the IP driven by accretion and partial subduction of Laurentian and mixed-affinity IP rocks beneath the overriding Carolina superterrane. The relatively clear separation of Taconic and Neoacadian monazite dates across the BFZ indicate that this shear zone acted as a Neoacadian thermal-rheologic transition zone that partitioned SW-directed crustal “escape” channel flow of melt-weakened material, as proposed by earlier studies. Late Paleozoic monazite U-Pb dates derived from within the BFZ (~335 Ma) and in the southeasternmost parts of the IP (~324 Ma) reflect Alleghanian reactivation of the BFZ and the northwesternmost extent of Alleghanian Barrovian metamorphism, respectively, but the majority of the BR and the IP in the study area reveal no evidence of post-Neoacadian metamorphic overprinting.more » « less
-
The concept of long-wavelength ductile flow of lower crustal material, or channel flow, has emerged to explain the evolution of large hot orogens. In this model, growth of heat producing crust during collision leads to melt-weakening and flow of lower crust in response to tectonic forcing or long-wavelength gradients in gravitational potential energy. In the Himalayan-Tibetan (HT) orogen where the model was originally proposed, it has been hypothesized that a Miocene orogen-normal channel was active and that there was a more recent switch to orogen-parallel “escape” flow as the front of the orogen began to deform as a thrust wedge. However, because this hypothesized HT orogenic channel is largely subsurface it cannot be directly examined, making it difficult to test these hypotheses. The Inner Piedmont (IP), southern Appalachians has been proposed to be an exhumed orogenic channel based on inverted metamorphic isograds, extensive migmatization, and a large-scale curved mineral lineation pattern that is consistent with a shift from orogen-normal to orogen-parallel flow. To test the viability of the channel flow model in the IP, we construct pressure-temperature-time (P-T-t) paths and compare these to existing models which indicate that peak temperatures and residence times will differ between thrust wedge and channel flow models. The P-T-t paths are constructed using isochemical phase diagram sections (pseudosections), garnet compositions, monazite geochronology, and 40Ar/39Ar thermochronology to define prograde to retrograde conditions and residence times. The channel flow models require temperatures above 700-750°C to initiate and maintain flow. Preliminary pseudosections from the northern IP Brindle Creek fault zone indicate prograde to peak conditions of 815–820 °C and 7.9–9.3 kbar, and retrograde conditions of 720–730 °C and 5.3–5.4 kbar based on observed garnet compositions and sample mineralogy (Qtz + Pl + Bt + Sil + Grt ± Ms ± Ep ± Ilm ± Rt). Pseudosections are still being revised, however if confirmed, the P-T conditions are compatible with channel flow in the IP. Future model revisions and age data from samples forming a transect across the IP and into the adjacent Carolina superterrane and eastern Blue Ridge will be used to compare the P-T-t histories between the prdoposed channel and surrounding units.more » « less
An official website of the United States government
