skip to main content

Search for: All records

Creators/Authors contains: "Moghimi, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The recent Spectre attack first showed how to inject incorrect branch targets into a victim domain by poisoning microarchitectural branch prediction history. In this paper, we generalize injection-based methodologies to the memory hierarchy by directly injecting incorrect, attacker-controlled values into a victim's transient execution. We propose Load Value Injection (LVI) as an innovative technique to reversely exploit Meltdown-type microarchitectural data leakage. LVI abuses that faulting or assisted loads, executed by a legitimate victim program, may transiently use dummy values or poisoned data from various microarchitectural buffers, before eventually being re-issued by the processor. We show how LVI gadgets allow to expose victim secrets and hijack transient control flow. We practically demonstrate LVI in several proof-of-concept attacks against Intel SGX enclaves, and we discuss implications for traditional user process and kernel isolation. State-of-the-art Meltdown and Spectre defenses, including widespread silicon-level and microcode mitigations, are orthogonal to our novel LVI techniques. LVI drastically widens the spectrum of incorrect transient paths. Fully mitigating our attacks requires serializing the processor pipeline with lfence instructions after possibly every memory load. Additionally and even worse, due to implicit loads, certain instructions have to be blacklisted, including the ubiquitous x86 ret instruction. Intel plans compiler and assembler-basedmore »full mitigations that will allow at least SGX enclave programs to remain secure on LVI-vulnerable systems. Depending on the application and optimization strategy, we observe extensive overheads of factor 2 to 19 for prototype implementations of the full mitigation.« less
  2. We describe Swivel, a new compiler framework for hardening WebAssembly (Wasm) against Spectre attacks. Outside the browser, Wasm has become a popular lightweight, in-process sandbox and is, for example, used in production to isolate different clients on edge clouds and function-as-a-service platforms. Unfortunately, Spectre attacks can bypass Wasm's isolation guarantees. Swivel hardens Wasm against this class of attacks by ensuring that potentially malicious code can neither use Spectre attacks to break out of the Wasm sandbox nor coerce victim code—another Wasm client or the embedding process—to leak secret data. We describe two Swivel designs, a software-only approach that can be used on existing CPUs, and a hardware-assisted approach that uses extension available in Intel® 11th generation CPUs. For both, we evaluate a randomized approach that mitigates Spectre and a deterministic approach that eliminates Spectre altogether. Our randomized implementations impose under 10.3% overhead on the Wasm-compatible subset of SPEC 2006, while our deterministic implementations impose overheads between 3.3% and 240.2%. Though high on some benchmarks, Swivel's overhead is still between 9× and 36.3× smaller than existing defenses that rely on pipeline fences.
  3. In May 2019, a new class of transient execution attack based on Meltdown called microarchitectural data sampling (MDS), was disclosed. MDS enables adversaries to leak secrets across security domains by collecting data from shared CPU resources such as data cache, fill buffers, and store buffers. These resources may temporarily hold data that belongs to other processes and privileged contexts, which could falsely be forwarded to memory accesses of an adversary. We perform an in-depth analysis of these Meltdown-style attacks using our novel fuzzing-based approach. We introduce an analysis tool, named Transynther, which mutates the basic block of existing Meltdown variants to generate and evaluate new Meltdown subvariants. We apply Transynther to analyze modern CPUs and better understand the root cause of these attacks. As a result, we find new variants of MDS that only target specific memory operations, e.g., fast string copies. Based on our findings, we propose a new attack, named Medusa, which can leak data from implicit write-combining memory operations. Since Medusa only applies to specific operations, it can be used to pinpoint vulnerable targets. In a case study, we apply Medusa to recover the key during the RSA signing operation. We show that Medusa can leak variousmore »parts of an RSA key during the base64 decoding stage. Then we build leakage templates and recover full RSA keys by employing lattice-based cryptanalysis techniques.« less
  4. Trusted Platform Module (TPM) serves as a hardwarebased root of trust that protects cryptographic keys from privileged system and physical adversaries. In this work, we perform a black-box timing analysis of TPM 2.0 devices deployed on commodity computers. Our analysis reveals that some of these devices feature secret-dependent execution times during signature generation based on elliptic curves. In particular, we discovered timing leakage on an Intel firmwarebased TPM as well as a hardware TPM. We show how this information allows an attacker to apply lattice techniques to recover 256-bit private keys for ECDSA and ECSchnorr signatures. On Intel fTPM, our key recovery succeeds after about 1,300 observations and in less than two minutes. Similarly, we extract the private ECDSA key from a hardware TPM manufactured by STMicroelectronics, which is certified at Common Criteria (CC) EAL 4+, after fewer than 40,000 observations. We further highlight the impact of these vulnerabilities by demonstrating a remote attack against a StrongSwan IPsec VPN that uses a TPM to generate the digital signatures for authentication. In this attack, the remote client recovers the server’s private authentication key by timing only 45,000 authentication handshakes via a network connection. The vulnerabilities we have uncovered emphasize the difficultymore »of correctly implementing known constant-time techniques, and show the importance of evolutionary testing and transparent evaluation of cryptographic implementations. Even certified devices that claim resistance against attacks require additional scrutiny by the community and industry, as we learn more about these attacks.« less
  5. Trusted Platform Module (TPM) serves as a hardware based root of trust that protects cryptographic keys from privileged system and physical adversaries. In this work, we perform a black-box timing analysis of TPM 2.0 devices deployed on commodity computers. Our analysis reveals that some of these devices feature secret-dependent execution times during signature generation based on elliptic curves. In particular, we discovered timing leakage on an Intel firmware based TPM as well as a hardware TPM. We show how this information allows an attacker to apply lattice techniques to recover 256-bit private keys for ECDSA and ECSchnorr signatures. On Intel fTPM, our key recovery succeeds after about 1,300 observations and in less than two minutes. Similarly, we extract the private ECDSA key from a hardware TPM manufactured by STMicroelectronics, which is certified at Common Criteria (CC) EAL 4+, after fewer than 40,000 observations. We further highlight the impact of these vulnerabilities by demonstrating a remote attack against a StrongSwan IPsec VPN that uses a TPM to generate the digital signatures for authentication. In this attack, the remote client recovers the server’s private authentication key by timing only 45,000 authentication handshakes via a network connection. The vulnerabilities we have uncovered emphasizemore »the difficulty of correctly implementing known constant-time techniques, and show the importance of evolutionary testing and transparent evaluation of cryptographic implementations. Even certified devices that claim resistance against attacks require additional scrutiny by the community and industry, as we learn more about these attacks.« less
  6. In early 2018, Meltdown first showed how to read arbitrary kernel memory from user space by exploiting side-effects from transient instructions. While this attack has been mitigated through stronger isolation boundaries between user and kernel space, Meltdown inspired an entirely new class of fault-driven transient-execution attacks. Particularly, over the past year, Meltdown-type attacks have been extended to not only leak data from the L1 cache but also from various other microarchitectural structures, including the FPU register file and store buffer. In this paper, we present the ZombieLoad attack which uncovers a novel Meltdown-type effect in the processor’s fill-buffer logic. Our analysis shows that faulting load instructions (i.e., loads that have to be re-issued) may transiently dereference unauthorized destinations previously brought into the fill buffer by the current or a sibling logical CPU. In contrast to concurrent attacks on the fill buffer, we are the first to report data leakage of recently loaded and stored stale values across logical cores even on Meltdown- and MDS-resistant processors. Hence, despite Intel’s claims [36], we show that the hardware fixes in new CPUs are not sufficient. We demonstrate ZombieLoad’s effectiveness in a multitude of practical attack scenarios across CPU privilege rings, OS processes, virtualmore »machines, and SGX enclaves. We discuss both short and long-term mitigation approaches and arrive at the conclusion that disabling hyperthreading is the only possible workaround to prevent at least the most-powerful cross-hyperthread attack scenarios on current processors, as Intel’s software fixes are incomplete.« less
  7. Meltdown and Spectre enable arbitrary data leakage from memory via various side channels. Short-term software mitigations for Meltdown are only a temporary solution with a significant performance overhead. Due to hardware fixes, these mitigations are disabled on recent processors. In this paper, we show that Meltdown-like attacks are still possible on recent CPUs which are not vulnerable to Meltdown. We identify two behaviors of the store buffer, a microarchitectural resource to reduce the latency for data stores, that enable powerful attacks. The first behavior, Write Transient Forwarding forwards data from stores to subsequent loads even when the load address differs from that of the store. The second, Store-to-Leak exploits the interaction between the TLB and the store buffer to leak metadata on store addresses. Based on these, we develop multiple attacks and demonstrate data leakage, control flow recovery, and attacks on ASLR. Our paper shows that Meltdown-like attacks are still possible, and software fixes with potentially significant performance overheads are still necessary to ensure proper isolation between the kernel and user space.