Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The plane strain problem of an isotropic elastic matrix subjected to uniform far-field load and containing multiple stiff prestressed arcs located on the same circle is considered. The boundary conditions for the arcs are described by those of either Gurtin–Murdoch or Steigmann–Ogden theories in which the arcs are endowed with their own elastic energies. The material parameters for each arc can in general be different. The problem is reduced to the system of real variables hypersingular boundary integral equations in terms of two scalar unknowns expressed via the components of the stress tensors of the arcs. The unknowns are approximated by the series of trigonometric functions that are multiplied by the square root weight functions to allow for automatic incorporation of the tip conditions. The coefficients in series are found from the system of linear algebraic equations that are solved using the collocation method. The expressions for the stress intensity factors are derived and numerical examples are presented to illustrate the influence of governing dimensionless parameters.more » « lessFree, publicly-accessible full text available December 1, 2025
-
The model of an anisotropic interface in an elastic particulate composite with initial stress is developed as the first-order approximation of a transversely isotropic interphase between an isotropic matrix and spherical particles. The model involves eight independent parameters with a clear physical meaning and conventional dimensionality. This ensures its applicability at various length scales and flexibility in modeling the interfaces, characterized by the initial stress and discontinuity of the displacement and stress fields. The relevance of this model to the theory of material interfaces and its applicability in nanomechanics is discussed. The proposed imperfect interface model is incorporated in the unit cell model of a spherical particle composite with thermal stress owing to uniform temperature change. The rigorous solution to the model boundary value problem is obtained using the multipole expansion method. The reported accurate numerical data confirm the correctness of the developed theory, provide an estimate of its accuracy and applicability limits in the multiparticle environment, and reveal significant effects of the interphase or interface anisotropy and initial stress on the local fields and overall thermoelastic properties of the composite.more » « less
An official website of the United States government
