Abstract The development of next-generation batteries, utilizing electrodes with high capacities and power densities requires a comprehensive understanding and precise control of material interfaces and architectures. Electro-chemo-mechanics plays an integral role in the morphological evolution and stability of such complex interfaces. Volume changes in electrode materials and the chemical interactions of electrode/electrolyte interfaces result in nonuniform stress fields and structurally different interphases, fundamentally affecting the underlying transport and reaction kinetics. The origin of this mechanistic coupling and its implications on degradation is uniquely dependent on the interface characteristics. In this review, the distinct nature of chemo–mechanical coupling and failure mechanisms at solid–liquid interfaces and solid–solid interfaces is analyzed. For lithium metal electrodes, the critical role of surface/microstructural heterogeneities on the solid electrolyte interphase (SEI) stability and dendrite growth in liquid electrolytes, and on the onset of contact loss and filament penetration with solid electrolytes is summarized. With respect to composite electrodes, key differences in the microstructure-coupled electro-chemo-mechanical attributes of intercalation- and conversion-based chemistries are delineated. Moving from liquid to solid electrolytes in such cathodes, we highlight the significant impact of solid–solid point contacts on transport/mechanical response, electrochemical performance, and failure modes such as particle cracking and delamination. Finally, we present our perspective on future research directions and opportunities to address the underlying electro-chemo-mechanical challenges for enabling next-generation lithium metal batteries. 
                        more » 
                        « less   
                    
                            
                            Anisotropic imperfect interface in elastic particulate composite with initial stress
                        
                    
    
            The model of an anisotropic interface in an elastic particulate composite with initial stress is developed as the first-order approximation of a transversely isotropic interphase between an isotropic matrix and spherical particles. The model involves eight independent parameters with a clear physical meaning and conventional dimensionality. This ensures its applicability at various length scales and flexibility in modeling the interfaces, characterized by the initial stress and discontinuity of the displacement and stress fields. The relevance of this model to the theory of material interfaces and its applicability in nanomechanics is discussed. The proposed imperfect interface model is incorporated in the unit cell model of a spherical particle composite with thermal stress owing to uniform temperature change. The rigorous solution to the model boundary value problem is obtained using the multipole expansion method. The reported accurate numerical data confirm the correctness of the developed theory, provide an estimate of its accuracy and applicability limits in the multiparticle environment, and reveal significant effects of the interphase or interface anisotropy and initial stress on the local fields and overall thermoelastic properties of the composite. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2112894
- PAR ID:
- 10341573
- Date Published:
- Journal Name:
- Mathematics and Mechanics of Solids
- Volume:
- 27
- Issue:
- 5
- ISSN:
- 1081-2865
- Page Range / eLocation ID:
- 872 to 895
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Polymer matrix composites have high strengths in tension. However, their compressive strengths are much lower than their tensile strengths due to their weak fiber/matrix interfacial shear strengths. We recently developed a new approach to fabricate composites by overwrapping individual carbon fibers or fiber tows with a carbon nanotube sheet and subsequently impregnate them into a matrix to enhance the interfacial shear strengths without degrading the tensile strengths of the carbon fibers. In this study, a theoretical analysis is conducted to identify the appropriate thickness of the nanocomposite interphase region formed by carbon nanotubes embedded in a matrix. Fibers are modeled as an anisotropic elastic material, and the nanocomposite interphase region and the matrix are considered as isotropic. A microbuckling problem is solved for the unidirectional composite under compression. The analytical solution is compared with finite element simulations for verification. It is determined that the critical load at the onset of buckling is lower in an anisotropic carbon fiber composite than in an isotropic fibfer composite due to lower transverse properties in the fibers. An optimal thickness for nanocomposite interphase region is determined, and this finding provides a guidance for the manufacture of composites using aligned carbon nanotubes as fillers in the nanocomposite interphase region.more » « less
- 
            This paper presents a study of the Bövik-Benveniste methodology for high order imperfect interface modeling of steady-state conduction problems involving coated spherical particles. Two types of imperfect interface models, that reduce the original three-phase configuration problem to the two-phase configuration problem, are discussed. In one model, the effect of the layer is accounted for via jumps in the field variables across the traces of its boundaries, while in the other via corresponding jumps across the trace of its mid-surface. Explicit expressions for the jumps are provided for both models up to the third order. The obtained higher order jump conditions are incorporated into the unit cell model of spherical particle composite. The multipole expansion method is used to derive the convergent series solutions to the corresponding boundary value problems. Numerical examples are presented to demonstrate that the use of higher order imperfect interface models allows for accurate evaluation of the local fields and overall conductivity of composites reinforced with coated spherical particles.more » « less
- 
            Debonding at the core–skin interphase region is one of the primary failure modes in core sandwich composites under shear loads. As a result, the ability to characterize the mechanical properties at the interphase region between the composite skin and core is critical for design analysis. This work intends to use nanoindentation to characterize the viscoelastic properties at the interphase region, which can potentially have mechanical properties changing from the composite skin to the core. A sandwich composite using a polyvinyl chloride foam core covered with glass fiber/resin composite skins was prepared by vacuum-assisted resin transfer molding. Nanoindentation at an array of sites was made by a Berkovich nanoindenter tip. The recorded nanoindentation load and depth as a function of time were analyzed using viscoelastic analysis. Results are reported for the shear creep compliance and Young’s relaxation modulus at various locations of the interphase region. The change of viscoelastic properties from higher values close to the fiber composite skin region to the smaller values close to the foam core was captured. The Young’s modulus at a given strain rate, which is also equal to the time-averaged Young’s modulus across the interphase region was obtained. The interphase Young’s modulus at a loading rate of 1 mN/s was determined to change from 1.4 GPa close to composite skin to 0.8 GPa close to the core. This work demonstrated the feasibility and effectiveness of nanoindentation-based interphase characterizations to be used as an input for the interphase stress distribution calculations, which can eventually enrich the design process of such sandwich composites.more » « less
- 
            null (Ed.)Abstract A micromechanics-based ductile fracture initiation theory is developed and applied for high-throughput assessment of ductile failure in plane stress. A key concept is that of inhomogeneous yielding such that microscopic failure occurs in bands with the driving force being a combination of band-resolved normal and shear tractions. The new criterion is similar to the phenomenological Mohr–Coulomb model, but the sensitivity of fracture initiation to the third stress invariant constitutes an emergent outcome of the formulation. Salient features of a fracture locus in plane stress are parametrically analyzed. In particular, it is shown that a finite shear ductility cannot be rationalized based on an isotropic theory that proceeds from first principles. Thus, the isotropic formulation is supplemented with an anisotropic model accounting for void rotation and shape change to complete the prediction of a fracture locus and compare with experiments. A wide body of experimental data from the literature is explored, and a simple procedure for calibrating the theory is outlined. Comparisons with experiments are discussed in some detail.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    