skip to main content

Search for: All records

Creators/Authors contains: "Mohammad Javad Amiri, Divyakant Agrawal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Permissioned Blockchain systems rely mainly on Byzantine fault-tolerant protocols to establish consensus on the order of transactions. While Byzantine fault-tolerant protocols mostly guarantee consistency (safety) in an asynchronous network using 3f+1 machines to overcome the simultaneous malicious failure of any f nodes, in many systems, e.g., blockchain systems, the number of available nodes (resources) is much more than 3f + 1. To utilize such extra resources, in this paper we introduce a model that leverages transaction parallelism by partitioning the nodes into clusters (partitions) and processing independent transactions on different partitions simultaneously. The model also shards the blockchain ledger, assignsmore »different shards of the blockchain ledger to different clusters, and includes both intra-shard and cross-shard transactions. Since more than one cluster is involved in each cross-shard transaction, the ledger is formed as a directed acyclic graph.« less
  2. Many existing blockchains do not adequately address all the characteristics of distributed system applications and suffer from serious architectural limitations resulting in performance and confidentiality issues. While recent permissioned blockchain systems, have tried to overcome these limitations, their focus has mainly been on workloads with no-contention, i.e., no conflicting transactions. In this paper, we introduce OXII, a new paradigm for permissioned blockchains to support distributed applications that execute concurrently. OXII is designed for workloads with (different degrees of) contention. We then present ParBlockchain, a permissioned blockchain designed specifically in the OXII paradigm. The evaluation of ParBlockchain using a series ofmore »benchmarks reveals that its performance in workloads with any degree of contention is better than the state of the art permissioned blockchain systems.« less