skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Search for: All records

Creators/Authors contains: "Mohsen Heidari, Farhad Shirani"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A new class of structured codes called quasi group codes (QGCs) is introduced. A QGC is a subset of a group code. In contrast with the group codes, QGCs are not closed under group addition. The parameters of the QGC can be chosen, such that the size of C C is equal to any number between C and C 2 . We analyze the performance of a specific class of QGCs. This class of QGCs is constructed by assigning single-letter distributions to the indices of the codewords in a group code. Then, the QGC is defined as the set of codewords whose index is in the typical set corresponding to these singleletter distributions. The asymptotic performance limits of this class of QGCs are characterized using single-letter information quantities. Corresponding covering and packing bounds are derived. It is shown that the point-to-point channel capacity and optimal rate-distortion function are achievable using QGCs. Coding strategies based on QGCs are introduced for three fundamental multi-terminal problems: the Körner-Marton problem for modulo prime-power sums, computation over the multiple access channel (MAC), and MAC with distributed states. For each problem, a single-letter achievable rate-region is derived. It is shown, through examples, that the coding strategies improve upon the previous strategies based on the unstructured codes, linear codes, and group codes. Index Terms— Quasi structure 
    more » « less
  2. In this paper, we investigate the necessity of finite blocklength codes in distributed transmission of independent message sets over channels with feedback. We provide two examples of three user interference channels with feedback where codes with asymptotically large effective lengths are sub-optimal. As a result, we conclude that coded transmission using finite effective length codes is necessary to achieve optimality. We argue that the sub-optimal performance of large effective length codes is due to their inefficiency in preserving the correlation between the inputs to the distributed terminals in the communication system. This correlation is made available by the presence of feedback at the terminals and is used as a means for coordination between them when using finite effective length coding strategies. 
    more » « less