- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Cao, Xi (1)
-
Irfan, Abdullah (1)
-
Mollenhauer, Michael (1)
-
Pfaff, Wolfgang (1)
-
Singirikonda, Kaushik (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nonreciprocal microwave routing plays a crucial role in measuring quantum circuits, and allows for realizing cascaded quantum systems for generating and stabilizing entanglement between noninteracting qubits. The most commonly used tools for implementing directionality are ferrite-based circulators. These devices are versatile, but suffer from excess loss, a large footprint, and fixed directionality. For utilizing nonreciprocity in scalable quantum circuits it is desirable to develop efficient integration of low-loss and controllable directional elements. Here, we report the design and experimental realization of a minimal controllable directional interface that can be directly coupled to superconducting qubits. In the device presented, nonreciprocity is realized through a combination of interference and phase-controlled parametric pumping. We have achieved a maximum directionality of around 30 dB, and the performance of the device is predicted quantitatively from independent calibration measurements. Using the excellent agreement of model and experiment, we predict that the circuit will be useable as a chiral qubit interface with inefficiencies at the level or below. Our work offers a promising route for realizing high-fidelity signal routing and entanglement generation in all-to-all connected microwave quantum networks, and provides a path for isolator-free qubit readout schemes. Published by the American Physical Society2024more » « less
An official website of the United States government
