skip to main content

Search for: All records

Creators/Authors contains: "Mondal, Mainack"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Over-sharing poorly-worded thoughts and personal information is prevalent on online social platforms. In many of these cases, users regret posting such content. To retrospectively rectify these errors in users' sharing decisions, most platforms offer (deletion) mechanisms to withdraw the content, and social media users often utilize them. Ironically and perhaps unfortunately, these deletions make users more susceptible to privacy violations by malicious actors who specifically hunt post deletions at large scale. The reason for such hunting is simple: deleting a post acts as a powerful signal that the post might be damaging to its owner. Today, multiple archival services are already scanning social media for these deleted posts. Moreover, as we demonstrate in this work, powerful machine learning models can detect damaging deletions at scale. Towards restraining such a global adversary against users' right to be forgotten, we introduce Deceptive Deletion, a decoy mechanism that minimizes the adversarial advantage. Our mechanism injects decoy deletions, hence creating a two-player minmax game between an adversary that seeks to classify damaging content among the deleted posts and a challenger that employs decoy deletions to masquerade real damaging deletions. We formalize the Deceptive Game between the two players, determine conditions under which either themore »adversary or the challenger provably wins the game, and discuss the scenarios in-between these two extremes. We apply the Deceptive Deletion mechanism to a real-world task on Twitter: hiding damaging tweet deletions. We show that a powerful global adversary can be beaten by a powerful challenger, raising the bar significantly and giving a glimmer of hope in the ability to be really forgotten on social platforms.« less
  2. Many social media sites permit users to delete, edit, anonymize, or otherwise modify past posts. These mechanisms enable users to protect their privacy, but also to essentially change the past. We investigate perceptions of the necessity and acceptability of these mechanisms. Drawing on boundary-regulation theories of privacy, we first identify how users who reshared or responded to a post could be impacted by its retrospective modification. These mechanisms can cause boundary turbulence by recontextualizing past content and limiting accountability. In contrast, not permitting modification can lessen privacy and perpetuate harms of regrettable content. To understand how users perceive these mechanisms, we conducted 15 semi-structured interviews. Participants deemed retrospective modification crucial for fixing past mistakes. Nonetheless, they worried about the potential for deception through selective changes or removal. Participants were aware retrospective modification impacts others, yet felt these impacts could be minimized through context-aware usage of markers and proactive notifications.
  3. When users post on social media, they protect their privacy by choosing an access control setting that is rarely revisited. Changes in users' lives and relationships, as well as social media platforms themselves, can cause mismatches between a post's active privacy setting and the desired setting. The importance of managing this setting combined with the high volume of potential friend-post pairs needing evaluation necessitate a semi-automated approach. We attack this problem through a combination of a user study and the development of automated inference of potentially mismatched privacy settings. A total of 78 Facebook users reevaluated the privacy settings for five of their Facebook posts, also indicating whether a selection of friends should be able to access each post. They also explained their decision. With this user data, we designed a classifier to identify posts with currently incorrect sharing settings. This classifier shows a 317% improvement over a baseline classifier based on friend interaction. We also find that many of the most useful features can be collected without user intervention, and we identify directions for improving the classifier's accuracy.
  4. Online archives, including social media and cloud storage, store vast troves of personal data accumulated over many years. Recent work suggests that users feel the need to retrospectively manage security and privacy for this huge volume of content. However, few mechanisms and systems help these users complete this daunting task. To that end, we propose the creation of usable retrospective data management mechanisms, outlining our vision for a possible architecture to address this challenge.