skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deceptive Deletions for Protecting Withdrawn Posts on Social Media Platform
Over-sharing poorly-worded thoughts and personal information is prevalent on online social platforms. In many of these cases, users regret posting such content. To retrospectively rectify these errors in users' sharing decisions, most platforms offer (deletion) mechanisms to withdraw the content, and social media users often utilize them. Ironically and perhaps unfortunately, these deletions make users more susceptible to privacy violations by malicious actors who specifically hunt post deletions at large scale. The reason for such hunting is simple: deleting a post acts as a powerful signal that the post might be damaging to its owner. Today, multiple archival services are already scanning social media for these deleted posts. Moreover, as we demonstrate in this work, powerful machine learning models can detect damaging deletions at scale. Towards restraining such a global adversary against users' right to be forgotten, we introduce Deceptive Deletion, a decoy mechanism that minimizes the adversarial advantage. Our mechanism injects decoy deletions, hence creating a two-player minmax game between an adversary that seeks to classify damaging content among the deleted posts and a challenger that employs decoy deletions to masquerade real damaging deletions. We formalize the Deceptive Game between the two players, determine conditions under which either the adversary or the challenger provably wins the game, and discuss the scenarios in-between these two extremes. We apply the Deceptive Deletion mechanism to a real-world task on Twitter: hiding damaging tweet deletions. We show that a powerful global adversary can be beaten by a powerful challenger, raising the bar significantly and giving a glimmer of hope in the ability to be really forgotten on social platforms.  more » « less
Award ID(s):
1943364
PAR ID:
10225142
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
NDSS
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over-sharing poorly-worded thoughts and personal information is prevalent on online social platforms. In many of these cases, users regret posting such content. To retrospectively rectify these errors in users' sharing decisions, most platforms offer (deletion) mechanisms to withdraw the content, and social media users often utilize them. Ironically and perhaps unfortunately, these deletions make users more susceptible to privacy violations by malicious actors who specifically hunt post deletions at large scale. The reason for such hunting is simple: deleting a post acts as a powerful signal that the post might be damaging to its owner. Today, multiple archival services are already scanning social media for these deleted posts. Moreover, as we demonstrate in this work, powerful machine learning models can detect damaging deletions at scale. Towards restraining such a global adversary against users' right to be forgotten, we introduce Deceptive Deletion, a decoy mechanism that minimizes the adversarial advantage. Our mechanism injects decoy deletions, hence creating a two-player minmax game between an adversary that seeks to classify damaging content among the deleted posts and a challenger that employs decoy deletions to masquerade real damaging deletions. We formalize the Deceptive Game between the two players, determine conditions under which either the adversary or the challenger provably wins the game, and discuss the scenarios in-between these two extremes. We apply the Deceptive Deletion mechanism to a real-world task on Twitter: hiding damaging tweet deletions. We show that a powerful global adversary can be beaten by a powerful challenger, raising the bar significantly and giving a glimmer of hope in the ability to be really forgotten on social platforms. 
    more » « less
  2. Background The increasing volume of health-related social media activity, where users connect, collaborate, and engage, has increased the significance of analyzing how people use health-related social media. Objective The aim of this study was to classify the content (eg, posts that share experiences and seek support) of users who write health-related social media posts and study the effect of user demographics on post content. Methods We analyzed two different types of health-related social media: (1) health-related online forums—WebMD and DailyStrength—and (2) general online social networks—Twitter and Google+. We identified several categories of post content and built classifiers to automatically detect these categories. These classifiers were used to study the distribution of categories for various demographic groups. Results We achieved an accuracy of at least 84% and a balanced accuracy of at least 0.81 for half of the post content categories in our experiments. In addition, 70.04% (4741/6769) of posts by male WebMD users asked for advice, and male users’ WebMD posts were more likely to ask for medical advice than female users’ posts. The majority of posts on DailyStrength shared experiences, regardless of the gender, age group, or location of their authors. Furthermore, health-related posts on Twitter and Google+ were used to share experiences less frequently than posts on WebMD and DailyStrength. Conclusions We studied and analyzed the content of health-related social media posts. Our results can guide health advocates and researchers to better target patient populations based on the application type. Given a research question or an outreach goal, our results can be used to choose the best online forums to answer the question or disseminate a message. 
    more » « less
  3. When users post on social media, they protect their privacy by choosing an access control setting that is rarely revisited. Changes in users' lives and relationships, as well as social media platforms themselves, can cause mismatches between a post's active privacy setting and the desired setting. The importance of managing this setting combined with the high volume of potential friend-post pairs needing evaluation necessitate a semi-automated approach. We attack this problem through a combination of a user study and the development of automated inference of potentially mismatched privacy settings. A total of 78 Facebook users reevaluated the privacy settings for five of their Facebook posts, also indicating whether a selection of friends should be able to access each post. They also explained their decision. With this user data, we designed a classifier to identify posts with currently incorrect sharing settings. This classifier shows a 317% improvement over a baseline classifier based on friend interaction. We also find that many of the most useful features can be collected without user intervention, and we identify directions for improving the classifier's accuracy. 
    more » « less
  4. Voluntary sharing of personal information is at the heart of user engagement on social media and central to platforms' business models. From the users' perspective, so-called self-disclosure is closely connected with both privacy risks and social rewards. Prior work has studied contextual influences on self-disclosure, from platform affordances and interface design to user demographics and perceived social capital. Our work takes a mixed-methods approach to understand the contextual information which might be integrated in the development of privacy-enhancing technologies. Through observational study of several Reddit communities, we explore the ways in which topic of discussion, group norms, peer effects, and audience size are correlated with personal information sharing. We then build and test a prototype privacy-enhancing tool that exposes these contextual factors. Our work culminates in a browser extension that automatically detects instances of self-disclosure in Reddit posts at the time of posting and provides additional context to users before they post to support enhanced privacy decision-making. We share this prototype with social media users, solicit their feedback, and outline a path forward for privacy-enhancing technologies in this space. 
    more » « less
  5. Social media platforms provide users with various ways of interacting with each other, such as commenting, reacting to posts, sharing content, and uploading pictures. Facebook is one of the most popular platforms, and its users frequently share and reshare posts, including research articles. Moreover, the reactions feature on Facebook allows users to express their feelings towards the content they view, providing valuable data for analysis. This study aims to predict the emotional impact of Facebook posts relating to research articles. We collected data on Facebook posts related to various scientific research domains, including Health Sciences, Social Sciences, Dentistry, Arts, and Humanities. We observed Facebook users’ reactions towards research articles and posts and found that ‘Like’ reactions were the most common. We also noticed that research articles from the Dentistry research domain received a lot of ‘Haha’ reactions. We used machine learning models to predict the sentiment of Facebook posts related to research articles. We used features such as the research article’s title sentiment, abstract sentiment, abstract length, author count, and research domain to build the models. We used five classifiers: Random Forest, Decision Tree, K-Nearest Neighbors, Logistic Regression, and Naïve Bayes. The models were evaluated using accuracy, precision, recall, and F-1 score metrics. The Random Forest classifier was the best model for two- and three-class labels, achieving accuracy measures of 86% and 66%, respectively. We also evaluated the feature importance for the Random Forest model and found that the sentiment of the research article’s title is crucial in predicting the sentiment of the Facebook post. This study has substantial implications for public engagement in science-related messages. The emotional reactions of Facebook users towards research articles and posts can provide valuable insights into public engagement in science, and predicting the emotional impact of Facebook posts related to research articles can help researchers understand how the public perceives scientific research. The findings of the study can aid researchers in effectively communicating their research and engaging the public in scientific discourse. 
    more » « less