Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Water column nutrient concentrations and autotrophy in oligotrophic ecosystems are sensitive to eutrophication and other long-term environmental changes and disturbances. Disturbance can be defined as an event or process that changes the structure and response of an ecosystem to other environmental drivers. The role disturbance plays in regulating ecosystem functions is challenging because the effect of the disturbance can vary in magnitude, duration, and extent spatially and temporally. We measured changes in total nitrogen (TN), dissolved inorganic nutrient (DIN), total phosphorus (TP), soluble reactive phosphorus (SRP), total organic carbon (TOC), and chlorophyll-a (Chl-a) concentrations throughout the Everglades, Florida Bay, and the Florida Keys. This region has been subjected to a variety of natural and anthropogenic disturbances including tropical storms, fires, eutrophication, and rapid increases in water levels from sea-level rise and freshwater restoration. We hypothesized that the rate of change in water quality would be greatest in the coastal ecotone where disturbance frequencies and marine P concentrations are highest, and in freshwater marshes closest to hydrologic changes from restoration. We applied trend analyses on multi-decadal data (1996–2019) collected from 461 locations distributed from inland freshwater Everglades (ridge and slough) to outer marine reefs along the Florida Keys, USA. Total Organic Carbon decreased throughout the study area and was the only parameter with a systematic trend throughout the study area. All other parameters had spatially heterogeneous patterns in long-term trends. Results indicate more variability across a large spatial and temporal extent associated with changes in biogeochemical indicators and water quality conditions. Chemical and biological changes in oligotrophic ecosystems are important indicators of environmental change, and our regional ridge-to-reef assessment revealed ecosystem-specific responses to both long-term environmental changes and disturbance legacies.more » « lessFree, publicly-accessible full text available October 1, 2025
-
Blasiak, Robert (Ed.)Abstract Marine Life 2030 is a programme endorsed by the United Nations Decade of Ocean Science for Sustainable Development (the Ocean Decade) to establish a globally coordinated system that delivers knowledge of ocean life to those who need it, promoting human well-being, sustainable development, and ocean conservation. It is an open network to unite existing and new programmes into a co-designed, global framework to share information on methods, standards, observations, and applications. Goals include realizing interoperable information and transforming the observation and forecasting of marine life for the benefit of all people. Co-design, sharing local capacity, and coordination between users of ocean resources across regions is fundamental to enable sustainable use and conservation. A novel, bottom-up networking structure is now engaging members of the ocean community to address local issues, with Marine Life 2030 facilitating the linkage between groups across different regions to meet the challenges of the Ocean Decade. A variety of metrics, including those proposed by the Group on Earth Observations, will be used to track the success of the co-design process.more » « less
-
Coastal ecosystems are rapidly changing due to human-caused global warming, rising sea level, changing circulation patterns, sea ice loss, and acidification that in turn alter the productivity and composition of marine biological communities. In addition, regional pressures associated with growing human populations and economies result in changes in infrastructure, land use, and other development; greater extraction of fisheries and other natural resources; alteration of benthic seascapes; increased pollution; and eutrophication. Understanding biodiversity is fundamental to assessing and managing human activities that sustain ecosystem health and services and mitigate humankind’s indiscretions. Remote-sensing observations provide rapid and synoptic data for assessing biophysical interactions at multiple spatial and temporal scales and thus are useful for monitoring biodiversity in critical coastal zones. However, many challenges remain because of complex bio-optical signals, poor signal retrieval, and suboptimal algorithms. Here, we highlight four approaches in remote sensing that complement the Marine Biodiversity Observation Network (MBON). MBON observations help quantify plankton functional types, foundation species, and unique species habitat relationships, as well as inform species distribution models. In concert with in situ observations across multiple platforms, these efforts contribute to monitoring biodiversity changes in complex coastal regions by providing oceanographic context, contributing to algorithm and indicator development, and creating linkages between long-term ecological studies, the next generations of satellite sensors, and marine ecosystem management.more » « less
-
Free, publicly-accessible full text available December 1, 2024
-
Abstract. A global in situ data set for validation of ocean colour productsfrom the ESA Ocean Colour Climate Change Initiative (OC-CCI) is presented.This version of the compilation, starting in 1997, now extends to 2021,which is important for the validation of the most recent satellite opticalsensors such as Sentinel 3B OLCI and NOAA-20 VIIRS. The data set comprisesin situ observations of the following variables: spectral remote-sensingreflectance, concentration of chlorophyll-a, spectral inherent opticalproperties, spectral diffuse attenuation coefficient, and total suspendedmatter. Data were obtained from multi-project archives acquired via openinternet services or from individual projects acquired directly from dataproviders. Methodologies were implemented for homogenization, qualitycontrol, and merging of all data. Minimal changes were made on the originaldata, other than conversion to a standard format, elimination of some points,after quality control and averaging of observations that were close in timeand space. The result is a merged table available in text format. Overall,the size of the data set grew with 148 432 rows, with each row representing aunique station in space and time (cf. 136 250 rows in previous version;Valente et al., 2019). Observations of remote-sensing reflectance increasedto 68 641 (cf. 59 781 in previous version; Valente et al., 2019). There wasalso a near tenfold increase in chlorophyll data since 2016. Metadata ofeach in situ measurement (original source, cruise or experiment, principalinvestigator) are included in the final table. By making the metadataavailable, provenance is better documented and it is also possible toanalyse each set of data separately. The compiled data are available athttps://doi.org/10.1594/PANGAEA.941318 (Valente et al., 2022).more » « less