Ecosystems across the United States are changing in complex and surprising ways. Ongoing demand for critical ecosystem services requires an understanding of the populations and communities in these ecosystems in the future. This paper represents a synthesis effort of the U.S. National Science Foundation-funded Long-Term Ecological Research (LTER) network addressing the core research area of “populations and communities.” The objective of this effort was to show the importance of long-term data collection and experiments for addressing the hardest questions in scientific ecology that have significant implications for environmental policy and management. Each LTER site developed at least one compelling case study about what their site could look like in 50–100 yr as human and environmental drivers influencing specific ecosystems change. As the case studies were prepared, five themes emerged, and the studies were grouped into papers in this LTER Futures Special Feature addressing state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the “connectivity” theme and has examples from the Phoenix (urban), Niwot Ridge (alpine tundra), McMurdo Dry Valleys (polar desert), Plum Island (coastal), Santa Barbara Coastal (coastal), and Jornada (arid grassland and shrubland) sites. Connectivity has multiple dimensions, ranging from multi-scalar interactions in space to complexmore »
Satellite Remote Sensing and the Marine Biodiversity Observation Network: Current Science and Future Steps
Coastal ecosystems are rapidly changing due to human-caused global warming, rising sea level, changing circulation patterns, sea ice loss, and acidification that in turn alter the productivity and composition of marine biological communities. In addition, regional pressures associated with growing human populations and economies result in changes in infrastructure, land use, and other development; greater extraction of fisheries and other natural resources; alteration of benthic seascapes; increased pollution; and eutrophication. Understanding biodiversity is fundamental to assessing and managing human activities that sustain ecosystem health and services and mitigate humankind’s indiscretions. Remote-sensing observations provide rapid and synoptic data for assessing biophysical interactions at multiple spatial and temporal scales and thus are useful for monitoring biodiversity in critical coastal zones. However, many challenges remain because of complex bio-optical signals, poor signal retrieval, and suboptimal algorithms. Here, we highlight four approaches in remote sensing that complement the Marine Biodiversity Observation Network (MBON). MBON observations help quantify plankton functional types, foundation species, and unique species habitat relationships, as well as inform species distribution models. In concert with in situ observations across multiple platforms, these efforts contribute to monitoring biodiversity changes in complex coastal regions by providing oceanographic context, contributing to algorithm and indicator development, more »
- Award ID(s):
- 1831937
- Publication Date:
- NSF-PAR ID:
- 10378002
- Journal Name:
- Oceanography
- Volume:
- 34
- Issue:
- 2
- ISSN:
- 1042-8275
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Change in the coastal zone is accelerating with external forcing by sea-level rise, nutrient loading, drought, and over-harvest, leading to significant stress on the foundation plant species of coastal salt marshes. The rapid evolution of marsh state induced by these drivers makes the ability to detect stressors prior to marsh loss important. However, field work in coastal salt marshes can be challenging due to limited access and their fragile nature. Thus, remote sensing approaches hold promise for rapid and accurate determination of marsh state across multiple spatial scales. In this study, we evaluated the use of remote sensing tools to detect three dominant stressors on Spartina alterniflora. We took advantage of a barrier island salt marsh chronosequence in Virginia, USA, where marshes of different ages and level of stressor exist side by side. We collected hyperspectral imagery of plants along with salinity, sediment redox potential, and foliar nitrogen content in the field. We also conducted a greenhouse study where we manipulated environmental conditions. We found that models developed for stressors based on plant spectral response correlated well with salinity and foliar nitrogen within the greenhouse and field data, but were not transferable from lab to field, likely due to themore »
-
BACKGROUND The availability of nitrogen (N) to plants and microbes has a major influence on the structure and function of ecosystems. Because N is an essential component of plant proteins, low N availability constrains the growth of plants and herbivores. To increase N availability, humans apply large amounts of fertilizer to agricultural systems. Losses from these systems, combined with atmospheric deposition of fossil fuel combustion products, introduce copious quantities of reactive N into ecosystems. The negative consequences of these anthropogenic N inputs—such as ecosystem eutrophication and reductions in terrestrial and aquatic biodiversity—are well documented. Yet although N availability is increasing in many locations, reactive N inputs are not evenly distributed globally. Furthermore, experiments and theory also suggest that global change factors such as elevated atmospheric CO 2 , rising temperatures, and altered precipitation and disturbance regimes can reduce the availability of N to plants and microbes in many terrestrial ecosystems. This can occur through increases in biotic demand for N or reductions in its supply to organisms. Reductions in N availability can be observed via several metrics, including lowered nitrogen concentrations ([N]) and isotope ratios (δ 15 N) in plant tissue, reduced rates of N mineralization, and reduced terrestrial Nmore »
-
Drought intensity and duration are expected to increase over the coming century in the semiarid western United States due to anthropogenic climate change. Historic data indicate that megadroughts in this region have resulted in widespread ecosystem transitions. Landscape-scale monitoring with remote sensing can help land managers to track these changes. However, special considerations are required: traditional vegetation indices such as NDVI often underestimate vegetation cover in semiarid systems due to short and multimodal green pulses, extremely variable rainfall, and high soil fractions. Multi-endmember spectral mixture analysis (MESMA) may be more suitable, as it accounts for both green and non-photosynthetic soil fractions. To determine the suitability of MESMA for assessing drought vegetation dynamics in the western US, we test multiple endmember selection and model parameters for optimizing the classification of fractional cover of green vegetation (GV), non-photosynthetic vegetation (NPV), and soil (S) in semiarid grass- and shrubland in central New Mexico. Field spectra of dominant vegetation species were collected at the Sevilleta National Wildlife Refuge over six field sessions from May–September 2019. Landsat Thematic Mapper imagery from 2009 (two years pre-drought), and Landsat Operational Land Imager imagery from 2014 (final year of drought), and 2019 (five years post-drought) was unmixed. Themore »
-
The unique ecosystems and biodiversity associated with mid-ocean ridge (MOR) hydrothermal vent systems contrast sharply with surrounding deep-sea habitats, however both may be increasingly threatened by anthropogenic activity (e.g., mining activities at massive sulphide deposits). Climate change can alter the deep-sea through increased bottom temperatures, loss of oxygen, and modifications to deep water circulation. Despite the potential of these profound impacts, the mechanisms enabling these systems and their ecosystems to persist, function and respond to oceanic, crustal, and anthropogenic forces remain poorly understood. This is due primarily to technological challenges and difficulties in accessing, observing and monitoring the deep-sea. In this context, the development of deep-sea observatories in the 2000s focused on understanding the coupling between sub-surface flow and oceanic and crustal conditions, and how they influence biological processes. Deep-sea observatories provide long-term, multidisciplinary time-series data comprising repeated observations and sampling at temporal resolutions from seconds to decades, through a combination of cabled, wireless, remotely controlled, and autonomous measurement systems. The three existing vent observatories are located on the Juan de Fuca and Mid-Atlantic Ridges (Ocean Observing Initiative, Ocean Networks Canada and the European Multidisciplinary Seafloor and water column Observatory). These observatories promote stewardship by defining effective environmental monitoring includingmore »