Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. The chemical compound 1,2-dichloroethane (DCE), or ethylene dichloride, is an industrial very short-lived substance (VSLS) whose major use is as a feedstock in the production chain of polyvinyl chloride (PVC). Like other chlorinated VSLSs, transport of DCE (and/or its atmospheric oxidation products) to the stratosphere could contribute to ozone depletion there. However, despite annual production volumes greatly exceeding those of more prominent VSLSs (e.g. dichloromethane), global DCE observations are sparse; thus, the magnitude and distribution of DCE emissions and trends in its atmospheric abundance are poorly known. In this study, we performed an exploratory analysis of the global DCE budget between 2002 and 2020. Combining bottom-up data on annual production and assumptions around fugitive losses during production and feedstock use, we assessed the DCE source strength required to reproduce atmospheric DCE observations. We show that the TOMCAT/SLIMCAT 3-D chemical transport model (CTM) reproduces DCE measurements from various aircraft missions well, including HIPPO (2009–2011), ATom (2016–2018), and KORUS-AQ (2016), along with surface measurements from Southeast Asia, when assuming a regionally varying production emission factor in the range of 0.5 %–1.5 %. Our findings imply substantial fugitive losses of DCE and/or substantial emissive applications (e.g. solvent use) that are poorly reported. We estimate that DCE's global source increased by ∼ 45 % between 2002 (349 ± 61 Gg yr−1) and 2020 (505 ± 90 Gg yr−1), with its contribution to stratospheric chlorine increasing from 8.2 (± 1.5) to ∼ 12.9 (± 2.4) ppt Cl (where ppt denotes parts per trillion) over this period. DCE's relatively short overall tropospheric lifetime (∼ 83 d) limits, although does not preclude, its transport to the stratosphere, and we show that its impact on ozone is small at present. Annually averaged, DCE is estimated to have decreased ozone in the lower stratosphere by up to several parts per billion (< 1 %) in 2020, although a larger effect in the springtime Southern Hemisphere polar lower stratosphere is apparent (decreases of up to ∼ 1.3 %). Given strong potential for growth in DCE production tied to demand for PVC, ongoing measurements would be of benefit to monitor potential future increases in its atmospheric abundance and its contribution to ozone depletion.more » « lessFree, publicly-accessible full text available December 6, 2025
-
Abstract Chlorinated very short‐lived substances (Cl‐VSLS) are ubiquitous in the troposphere and can contribute to the stratospheric chlorine budget. In this study, we present measurements of atmospheric dichloromethane (CH2Cl2), tetrachloroethene (C2Cl4), chloroform (CHCl3), and 1,2‐dichloroethane (1,2‐DCA) obtained during the National Aeronautics and Space Administration (NASA) Atmospheric Tomography (ATom) global‐scale aircraft mission (2016–2018), and use the Community Earth System Model (CESM) updated with recent chlorine chemistry to further investigate their global tropospheric distribution. The measured global average Cl‐VSLS mixing ratios, from 0.2 to 13 km altitude, were 46.6 ppt (CH2Cl2), 9.6 ppt (CHCl3), 7.8 ppt (1,2‐DCA), and 0.84 ppt (C2Cl4) measured by the NSF NCAR Trace Organic Analyzer (TOGA) during ATom. Both measurements and model show distinct hemispheric gradients with the mean measured Northern to Southern Hemisphere (NH/SH) ratio of 2 or greater for all four Cl‐VSLS. In addition, the TOGA profiles over the NH mid‐latitudes showed general enhancements in the Pacific basin compared to the Atlantic basin, with up to ∼18 ppt difference for CH2Cl2in the mid troposphere. We tagged regional source emissions of CH2Cl2and C2Cl4in the model and found that Asian emissions dominate the global distributions of these species both at the surface (950 hPa) and at high altitudes (150 hPa). Overall, our results confirm relatively high mixing ratios of Cl‐VSLS in the UTLS region and show that the CESM model does a reasonable job of simulating their global abundance but we also note the uncertainties with Cl‐VSLS emissions and active chlorine sources in the model. These findings will be used to validate future emission inventories and to investigate the fast convective transport of Cl‐VSLS to the UTLS region and their impact on stratospheric ozone.more » « less
-
null (Ed.)Abstract. Atmospheric non-methane hydrocarbons (NMHCs) play an important role in theformation of secondary organic aerosols and ozone. After a multidecadalglobal decline in atmospheric mole fractions of ethane and propane – themost abundant atmospheric NMHCs – previous work has shown a reversal ofthis trend with increasing atmospheric abundances from 2009 to 2015 in theNorthern Hemisphere. These concentration increases were attributed to theunprecedented growth in oil and natural gas (O&NG) production in NorthAmerica. Here, we supplement this trend analysis building on the long-term(2008–2010; 2012–2020) high-resolution (∼3 h) record ofambient air C2–C7 NMHCs from in situ measurements at the GreenlandEnvironmental Observatory at Summit station (GEOSummit, 72.58 ∘ N,38.48 ∘ W; 3210 m above sea level). We confirm previous findingsthat the ethane mole fraction significantly increased by +69.0 [+47.4,+73.2; 95 % confidence interval] ppt yr−1 from January 2010 toDecember 2014. Subsequent measurements, however, reveal a significantdecrease by −58.4 [−64.1, −48.9] ppt yr−1 from January 2015 to December2018. A similar reversal is found for propane. The upturn observed after2019 suggests, however, that the pause in the growth of atmospheric ethaneand propane might only have been temporary. Discrete samples collected atother northern hemispheric baseline sites under the umbrella of the NOAAcooperative global air sampling network show a similar decrease in 2015–2018and suggest a hemispheric pattern. Here, we further discuss the potentialcontribution of biomass burning and O&NG emissions (the main sources ofethane and propane) and conclude that O&NG activities likely played arole in these recent changes. This study highlights the crucial need forbetter constrained emission inventories.more » « less
-
Abstract. Land surface modellers need measurable proxies toconstrain the quantity of carbon dioxide (CO2) assimilated bycontinental plants through photosynthesis, known as gross primary production(GPP). Carbonyl sulfide (COS), which is taken up by leaves through theirstomates and then hydrolysed by photosynthetic enzymes, is a candidate GPPproxy. A former study with the ORCHIDEE land surface model used a fixedratio of COS uptake to CO2 uptake normalised to respective ambientconcentrations for each vegetation type (leaf relative uptake, LRU) tocompute vegetation COS fluxes from GPP. The LRU approach is known to havelimited accuracy since the LRU ratio changes with variables such asphotosynthetically active radiation (PAR): while CO2 uptake slows underlow light, COS uptake is not light limited. However, the LRU approach hasbeen popular for COS–GPP proxy studies because of its ease of applicationand apparent low contribution to uncertainty for regional-scaleapplications. In this study we refined the COS–GPP relationship andimplemented in ORCHIDEE a mechanistic model that describes COS uptake bycontinental vegetation. We compared the simulated COS fluxes againstmeasured hourly COS fluxes at two sites and studied the model behaviour andlinks with environmental drivers. We performed simulations at a global scale,and we estimated the global COS uptake by vegetation to be −756 Gg S yr−1,in the middle range of former studies (−490 to −1335 Gg S yr−1). Basedon monthly mean fluxes simulated by the mechanistic approach in ORCHIDEE, wederived new LRU values for the different vegetation types, ranging between0.92 and 1.72, close to recently published averages for observed values of1.21 for C4 and 1.68 for C3 plants. We transported the COS using the monthlyvegetation COS fluxes derived from both the mechanistic and the LRUapproaches, and we evaluated the simulated COS concentrations at NOAA sites.Although the mechanistic approach was more appropriate when comparing tohigh-temporal-resolution COS flux measurements, both approaches gave similarresults when transporting with monthly COS fluxes and evaluating COSconcentrations at stations. In our study, uncertainties between these twoapproaches are of secondary importance compared to the uncertainties in theCOS global budget, which are currently a limiting factor to the potential ofCOS concentrations to constrain GPP simulated by land surface models on theglobal scale.more » « less
-
Abstract. For the past decade, observations of carbonyl sulfide (OCS or COS) have been investigated as a proxy for carbon uptake by plants. OCS is destroyed by enzymes that interact with CO2 during photosynthesis, namely carbonic anhydrase (CA) and RuBisCO, where CA is the more important one. The majority of sources of OCS to the atmosphere are geographically separated from this large plant sink, whereas the sources and sinks of CO2 are co-located in ecosystems. The drawdown of OCS can therefore be related to the uptake of CO2 without the added complication of co-located emissions comparable in magnitude. Here we review the state of our understanding of the global OCS cycle and its applications to ecosystem carbon cycle science. OCS uptake is correlated well to plant carbon uptake, especially at the regional scale. OCS can be used in conjunction with other independent measures of ecosystem function, like solar-induced fluorescence and carbon and water isotope studies. More work needs to be done to generate global coverage for OCS observations and to link this powerful atmospheric tracer to systems where fundamental questions concerning the carbon and water cycle remain.more » « less
-
Dunn, Robert J.; Stanitski, Diane M.; Gobron, Nadine; Willett, Kate M. (Ed.)