Abstract. The uptake of carbonyl sulfide (COS) by terrestrial plants is linked tophotosynthetic uptake of CO2 as these gases partly share the sameuptake pathway. Applying COS as a photosynthesis tracer in models requires anaccurate representation of biosphere COS fluxes, but these models have notbeen extensively evaluated against field observations of COS fluxes. In thispaper, the COS flux as simulated by the Simple Biosphere Model, version 4(SiB4), is updated with the latest mechanistic insights and evaluated with siteobservations from different biomes: one evergreen needleleaf forest, twodeciduous broadleaf forests, three grasslands, and two crop fields spread overEurope and North America. We improved SiB4 in several ways to improve itsrepresentation of COS. To account for the effect of atmospheric COS molefractions on COS biosphere uptake, we replaced the fixed atmospheric COS molefraction boundary condition originally used in SiB4 with spatially andtemporally varying COS mole fraction fields. Seasonal amplitudes of COS molefractions are ∼50–200 ppt at the investigated sites with aminimum mole fraction in the late growing season. Incorporating seasonalvariability into the model reduces COS uptake rates in the late growingseason, allowing better agreement with observations. We also replaced theempirical soil COS uptake model in SiB4 with a mechanistic model thatrepresents both uptake and production of COS in soils, which improves thematch with observations over agricultural fields and fertilized grasslandsoils. The improved version of SiB4 was capable of simulating the diurnal andseasonal variation in COS fluxes in the boreal, temperate, and Mediterraneanregion. Nonetheless, the daytime vegetation COS flux is underestimated onaverage by 8±27 %, albeit with large variability across sites. On aglobal scale, our model modifications decreased the modeled COS terrestrialbiosphere sink from 922 Gg S yr−1 in the original SiB4 to753 Gg S yr−1 in the updated version. The largest decrease influxes was driven by lower atmospheric COS mole fractions over regions withhigh productivity, which highlights the importance of accounting forvariations in atmospheric COS mole fractions. The change to a different soilmodel, on the other hand, had a relatively small effect on the globalbiosphere COS sink. The secondary role of the modeled soil component in theglobal COS budget supports the use of COS as a global photosynthesis tracer. Amore accurate representation of COS uptake in SiB4 should allow for improvedapplication of atmospheric COS as a tracer of local- to global-scaleterrestrial photosynthesis.
more »
« less
Carbonyl sulfide: comparing a mechanistic representation of the vegetation uptake in a land surface model and the leaf relative uptake approach
Abstract. Land surface modellers need measurable proxies toconstrain the quantity of carbon dioxide (CO2) assimilated bycontinental plants through photosynthesis, known as gross primary production(GPP). Carbonyl sulfide (COS), which is taken up by leaves through theirstomates and then hydrolysed by photosynthetic enzymes, is a candidate GPPproxy. A former study with the ORCHIDEE land surface model used a fixedratio of COS uptake to CO2 uptake normalised to respective ambientconcentrations for each vegetation type (leaf relative uptake, LRU) tocompute vegetation COS fluxes from GPP. The LRU approach is known to havelimited accuracy since the LRU ratio changes with variables such asphotosynthetically active radiation (PAR): while CO2 uptake slows underlow light, COS uptake is not light limited. However, the LRU approach hasbeen popular for COS–GPP proxy studies because of its ease of applicationand apparent low contribution to uncertainty for regional-scaleapplications. In this study we refined the COS–GPP relationship andimplemented in ORCHIDEE a mechanistic model that describes COS uptake bycontinental vegetation. We compared the simulated COS fluxes againstmeasured hourly COS fluxes at two sites and studied the model behaviour andlinks with environmental drivers. We performed simulations at a global scale,and we estimated the global COS uptake by vegetation to be −756 Gg S yr−1,in the middle range of former studies (−490 to −1335 Gg S yr−1). Basedon monthly mean fluxes simulated by the mechanistic approach in ORCHIDEE, wederived new LRU values for the different vegetation types, ranging between0.92 and 1.72, close to recently published averages for observed values of1.21 for C4 and 1.68 for C3 plants. We transported the COS using the monthlyvegetation COS fluxes derived from both the mechanistic and the LRUapproaches, and we evaluated the simulated COS concentrations at NOAA sites.Although the mechanistic approach was more appropriate when comparing tohigh-temporal-resolution COS flux measurements, both approaches gave similarresults when transporting with monthly COS fluxes and evaluating COSconcentrations at stations. In our study, uncertainties between these twoapproaches are of secondary importance compared to the uncertainties in theCOS global budget, which are currently a limiting factor to the potential ofCOS concentrations to constrain GPP simulated by land surface models on theglobal scale.
more »
« less
- Award ID(s):
- 1848618
- PAR ID:
- 10311393
- Date Published:
- Journal Name:
- Biogeosciences
- Volume:
- 18
- Issue:
- 9
- ISSN:
- 1726-4189
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Ground-level ozone (O3) is a major air pollutant that adversely affects human health and ecosystem productivity. Removal of troposphericO3 by plant stomatal uptake can in turn cause damage to plant tissues with ramifications for ecosystem and crop health. In manyatmospheric and land surface models, the functionality of stomata opening is represented by a bulk stomatal conductance, which is oftensemi-empirically parameterized and highly fitted to historical observations. A lack of mechanistic linkage to ecophysiological processes such asphotosynthesis may render models inadequate to represent plant-mediated responses of atmospheric chemistry to long-term changes in CO2,climate, and short-lived air pollutant concentrations. A new ecophysiology module was thus developed to mechanistically simulate land−atmosphereexchange of important gas species in GEOS-Chem, a chemical transport model widely used in atmospheric chemistry studies. The implementation not onlyallows for dry deposition to be coupled with plant ecophysiology but also enables plant and crop productivity and functions to respond dynamically toatmospheric chemical changes. We conduct simulations to evaluate the effects of the ecophysiology module on simulated dry deposition velocity andconcentration of surface O3 against an observation-derived dataset known as SynFlux. Our estimated stomatal conductance and dry depositionvelocity of O3 are close to SynFlux with root-mean-squared errors (RMSEs) below 0.3 cm s−1 across different plant functionaltypes (PFTs), despite an overall positive bias in surface O3 concentration (by up to 16 ppbv). Representing ecophysiology wasfound to reduce the simulated biases in deposition fluxes from the prior model but worsen the positive biases in simulated O3concentrations. The increase in positive concentration biases is mostly attributable to the ecophysiology-based stomatal conductance being generallysmaller (and closer to SynFlux values) than that estimated by the prior semi-empirical formulation, calling for further improvements in non-stomataldepositional and non-depositional processes relevant for O3 simulations. The estimated global O3 deposition flux is864 Tg O3 yr−1 with GEOS-Chem, and the new module decreases this estimate by 92 Tg O3 yr−1. Estimated global grossprimary production (GPP) without O3 damage is 119 Pg C yr−1. O3-induced reduction in GPP is 4.2 Pg C yr−1(3.5 %). An elevated CO2 scenario (580 ppm) yields higher global GPP (+16.8 %) and lower global O3depositional sink (−3.3 %). Global isoprene emission simulated with a photosynthesis-based scheme is 317.9 Tg C yr−1, which is31.2 Tg C yr−1 (−8.9 %) less than that calculated using the MEGAN(Model of Emissions of Gases and Aerosols from Nature) emission algorithm. This new model development dynamicallyrepresents the two-way interactions between vegetation and air pollutants and thus provides a unique capability in evaluating vegetation-mediatedprocesses and feedbacks that can shape atmospheric chemistry and air quality, as well as pollutant impacts on vegetation health, especially for anytimescales shorter than the multidecadal timescale.more » « less
-
null (Ed.)Robust estimates for the rates and trends in terrestrial gross primary production (GPP; plant CO 2 uptake) are needed. Carbonyl sulfide (COS) is the major long-lived sulfur-bearing gas in the atmosphere and a promising proxy for GPP. Large uncertainties in estimating the relative magnitude of the COS sources and sinks limit this approach. Sulfur isotope measurements ( 34 S/ 32 S; δ 34 S) have been suggested as a useful tool to constrain COS sources. Yet such measurements are currently scarce for the atmosphere and absent for the marine source and the plant sink, which are two main fluxes. Here we present sulfur isotopes measurements of marine and atmospheric COS, and of plant-uptake fractionation experiments. These measurements resulted in a complete data-based tropospheric COS isotopic mass balance, which allows improved partition of the sources. We found an isotopic (δ 34 S ± SE) value of 13.9 ± 0.1‰ for the troposphere, with an isotopic seasonal cycle driven by plant uptake. This seasonality agrees with a fractionation of −1.9 ± 0.3‰ which we measured in plant-chamber experiments. Air samples with strong anthropogenic influence indicated an anthropogenic COS isotopic value of 8 ± 1‰. Samples of seawater-equilibrated-air indicate that the marine COS source has an isotopic value of 14.7 ± 1‰. Using our data-based mass balance, we constrained the relative contribution of the two main tropospheric COS sources resulting in 40 ± 17% for the anthropogenic source and 60 ± 20% for the oceanic source. This constraint is important for a better understanding of the global COS budget and its improved use for GPP determination.more » « less
-
Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize datasets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC) are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The global net uptake of CO2 by the ocean (SOCEAN, called the ocean sink) is estimated with global ocean biogeochemistry models and observation-based fCO2 products (fCO2 is the fugacity of CO2). The global net uptake of CO2 by the land (SLAND, called the land sink) is estimated with dynamic global vegetation models. Additional lines of evidence on land and ocean sinks are provided by atmospheric inversions, atmospheric oxygen measurements, and Earth system models. The sum of all sources and sinks results in the carbon budget imbalance (BIM), a measure of imperfect data and incomplete understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2023, EFOS increased by 1.3 % relative to 2022, with fossil emissions at 10.1 ± 0.5 GtC yr−1 (10.3 ± 0.5 GtC yr−1 when the cement carbonation sink is not included), and ELUC was 1.0 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 11.1 ± 0.9 GtC yr−1 (40.6 ± 3.2 GtCO2 yr−1). Also, for 2023, GATM was 5.9 ± 0.2 GtC yr−1 (2.79 ± 0.1 ppm yr−1; ppm denotes parts per million), SOCEAN was 2.9 ± 0.4 GtC yr−1, and SLAND was 2.3 ± 1.0 GtC yr−1, with a near-zero BIM (−0.02 GtC yr−1). The global atmospheric CO2 concentration averaged over 2023 reached 419.31 ± 0.1 ppm. Preliminary data for 2024 suggest an increase in EFOS relative to 2023 of +0.8 % (−0.2 % to 1.7 %) globally and an atmospheric CO2 concentration increase by 2.87 ppm, reaching 422.45 ppm, 52 % above the pre-industrial level (around 278 ppm in 1750). Overall, the mean of and trend in the components of the global carbon budget are consistently estimated over the period 1959–2023, with a near-zero overall budget imbalance, although discrepancies of up to around 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows the following: (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the mean ocean sink. This living-data update documents changes in methods and datasets applied to this most recent global carbon budget as well as evolving community understanding of the global carbon cycle. The data presented in this work are available at https://doi.org/10.18160/GCP-2024 (Friedlingstein et al., 2024).more » « less
-
Elger, Kirsten; Carlson, David; Klump, Jens; Peng, Ge (Ed.)Air-sea flux of carbon dioxide (CO2) is a critical component of the global carbon cycle and the climate system with the ocean removing about a quarter of the CO2 emitted into the atmosphere by human activities over the last decade. A common approach to estimate this net flux of CO2 across the air-sea interface is the use of surface ocean CO2 observations and the computation of the flux through a bulk parameterization approach. Yet, the details for how this is done in order to arrive at a global ocean CO2 uptake estimate varies greatly, unnecessarily enhancing the uncertainties. Here we reduce some of these uncertainties by harmonizing an ensemble of products that interpolate surface ocean CO2 bservations to near global coverage. We propose a common methodology to fill in missing areas in the products and to calculate fluxes and present a new estimate of the net flux. The ensemble data product, SeaFlux (Gregor & Fay (2021), doi.org/10.5281/zenodo.4133802, https://github.com/luke-gregor/SeaFlux), accounts for the diversity of the underlying mapping methodologies. Utilizing six 30 global observation-based mapping products (CMEMS-FFNN, CSIR-ML6, JENA-MLS, JMA-MLR, MPI-SOMFFN, NIESFNN), the SeaFlux ensemble approach adjusts for methodological inconsistencies in flux calculations that can result in an average error of 15% in global mean flux estimates. We address differences in spatial coverage of the surface ocean CO2 between the mapping products which ultimately yields an increase in CO2 uptake of up to 19% for some products. Fluxes are calculated using three wind products (CCMPv2, ERA5, and JRA55). Application of an appropriately scaled gas exchange 35 coefficient has a greater impact on the resulting flux than solely the choice of wind product. With these adjustments, we derive an improved ensemble of surface ocean pCO2 and air-sea carbon flux estimates. The SeaFlux ensemble suggests a global mean uptake of CO2 from the atmosphere of 1.92 +/- 0.35 PgC yr-1. This work aims to support the community effort to perform model-data intercomparisons which will help to identify missing fluxes as we strive to close the global carbon budget.more » « less