Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Signals recorded by two stations in the Brazilian region: [Fortaleza (3.74°S, 38.57°W) and Inconfidentes (22.31°S, 46.32°W)], receiving L1 transmissions from different geostationary satellites, were used to evaluate the amplitude scintillation indexS4and several characteristics of scintillation events (continuous record withS4 > 0.2) during nighttime hours (18:00 LT–02:00 LT) in the years 2014–2016. The effects from solar activity, season, and local time on the number of scintillation events per night, maximum scintillation, scintillation event duration, and spacing between consecutive events will be discussed. The results indicate that: (a) scintillation occurs from September to March in both links; (b) the most likely numbers of observed scintillation events per night were two or three, particularly during the first 2 years; (c) on average, the first scintillation event usually had larger maximumS4values when compared to those of the later ones along the night; (d) the first scintillation event had a longer mean duration than the succeeding ones in a given night; (e) the durations of scintillation events, regardless of their numbers per night and the location, decreased with local time; (f) the opposite dependence of spacings between consecutive events on local time was observed; (g) the cumulative distribution functions of the scintillation onset time indicated a strong dependence on the dip latitude of the station; and (h) early occurrences of onset times are directly related to the increased probability of the occurrence of multiple scintillation events.more » « less
-
The low-latitude ionosphere has an active behavior causing the total electron content (TEC) to vary spatially and temporally very dynamically. The solar activity and the geomagnetic field have a strong influence over the spatiotemporal distribution of TEC. These facts make it a challenge to attempt modeling the ionization response. Single frequency GNSS users are particularly vulnerable due to these ionospheric variations that cause degradation of positioning performance. Motivated by recent applications of machine learning, temporal series of TEC available in map formats were employed to build an independent TEC estimator model for low-latitude environments. A TEC dataset was applied along with geophysical indices of solar flux and magnetic activity to train a feedforward artificial neural network based on a multilayer perceptron (MLP) approach. The forecast for the next 24 h was made relying on TEC maps over the Brazilian region using data collected on the previous 5 days. The performance of this approach was evaluated and compared with real data. The accuracy of the model was evaluated taking into account seasonality, spatial coverage and dependence on solar flux and geomagnetic activity indices. The results of the analysis show that the developed model has a superior capacity describing the TEC behavior across Brazil, when compared to global ionosphere maps and the NeQuick G model. TEC predictions were applied in single point positioning. The achieved errors were 27% and 33% lower when compared to the results obtained using the NeQuick G and global ionosphere maps, respectively, showing success in estimating TEC with small recent datasets using MLP.more » « less
-
As part of an effort to observe and study ionospheric disturbances and their effects on radio signals used by Global Navigation Satellite Systems (GNSS), alternative low-cost GNSS-based ionospheric scintillation and total electron content (TEC) monitors have been deployed over the American sector. During an inspection of the observations made on 28 August 2022, we found increases in the amplitude scintillation index (S4) reported by the monitors for the period between approximately 17:45 UT and 18:20 UT. The distributed, dual-frequency observations made by the sensors allowed us to determine that the increases in S4were not caused by ionospheric irregularities. Instead, they resulted from Carrier-to-Noise (C/No) variations caused by a solar radio burst (SRB) event that followed the occurrence of two M-class X-ray solar flares and a Halo coronal mass ejection. The measurements also allowed us to quantify the impact of the SRB on GNSS signals. The observations show that the SRB caused maximum C/No fadings of about 8 dB-Hz (12 dB-Hz) on L1 ~ 1.6 GHz (L2 ~ 1.2 GHz) for signals observed by the monitor in Dallas for which the solar zenith angle was minimum (~24.4°) during the SRB. Calculations using observations made by the distributed monitors also show excellent agreement for estimates of the maximum (vertical equivalent) C/No fadings in both L1 and L2. The calculations show maximum fadings of 9 dB-Hz for L1 and of 13 dB-Hz for L2. Finally, the results exemplify the usefulness of low-cost monitors for studies beyond those associated with ionospheric irregularities and scintillation.more » « less
An official website of the United States government
