skip to main content


Search for: All records

Creators/Authors contains: "Morales, Javier"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    4D printing is an emerging field where 3D printing techniques are used to pattern stimuli‐responsive materials to create morphing structures, with time serving as the fourth dimension. However, current materials utilized for 4D printing are typically soft, exhibiting an elastic modulus (E) range of 10−4to 10 MPa during shape change. This restricts the scalability, actuation stress, and load‐bearing capabilities of the resulting structures. To overcome these limitations, multiscale heterogeneous polymer composites are introduced as a novel category of stiff, thermally responsive 4D printed materials. These inks exhibit anEthat is four orders of magnitude greater than that of existing 4D printed materials and offer tunable electrical conductivities for simultaneous Joule heating actuation and self‐sensing capabilities. Utilizing electrically controllable bilayers as building blocks, a flat geometry is designed and printed that morphs into a 3D self‐standing lifting robot, setting new records for weight‐normalized load lifted and actuation stress when compared to other 3D printed actuators. Furthermore, the ink palette is employed to create and print planar lattice structures that transform into various self‐supporting complex 3D shapes. These contributions are integrated into a 4D printed electrically controlled multigait crawling robotic lattice structure that can carry 144 times its own weight.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  2. Abstract

    The programmable assembly of innervated LCE actuators (iLCEs) with prescribed contractile actuation, self‐sensing, and closed loop control via core–shell 3D printing is reported. This extrusion‐based direct ink writing method enables coaxial filamentary features composed of pure LM core surrounded by an LCE shell, whose director is aligned along the print path. Specifically, the thermal response of the iLCE fiber‐type actuators is programmed, measured, and modeled during Joule heating, including quantifying the concomitant changes in fiber length and resistance that arise during simultaneous heating and self‐sensing. Due to their reversible, high‐energy actuation and their resistive feedback, it is also demonstrated that iLCEs can be regulated with closed loop control even when perturbed with large bias loads. Finally, iLCE architectures capable of programmed, self‐sensing 3D shape change with closed loop control are fabricated.

     
    more » « less
  3. Abstract

    Dielectric elastomer actuators (DEAs) are soft electromechanical devices that exhibit large energy densities and fast actuation rates. They are typically produced by planar methods and, thus, expand in‐plane when actuated. Here, reported is a method for fabricating 3D interdigitated DEAs that exhibit in‐plane contractile actuation modes. First, a conductive elastomer ink is created with the desired rheology needed for printing high‐fidelity, interdigitated electrodes. Upon curing, the electrodes are then encapsulated in a self‐healing dielectric matrix composed of a plasticized, chemically crosslinked polyurethane acrylate. 3D DEA devices are fabricated with tunable mechanical properties that exhibit breakdown fields of 25 V µm−1and actuation strains of up to 9%. As exemplars, printed are prestrain‐free rotational actuators and multi‐voxel DEAs with orthogonal actuation directions in large‐area, out‐of‐plane motifs.

     
    more » « less