skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moran, Kevin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Android User Interface (UI) testing has emerged as an important and prevalent research topic due to the ubiquity of apps and the unique challenges faced by developers in this software domain. One popular topic of research that aims to facilitate both manual and automated UI testing and debugging processes is record and replay (R&R) tools. These tools allow for the recording of UI actions to facilitate the execution of test scenarios and the replay of various types of bugs. R&R tools typically support three main settings: (i) UI regression testing via R&R of feature-based execution scenarios, (ii) R&R of non- crashing functional bugs (e.g., in crowdsourced settings), and (iii) R&R of crashing bugs. Despite the progress made in research related to R&R tools, prior work examined only the effectiveness of these tools in disparate or fragmented settings. As such, the research community currently lacks a comprehensive examination of the effectiveness of existing tools across their common use cases and the potential key limitations that emerge. We address this current gap in knowledge by conducting a thorough empirical study on using R&R tools to manually record and replay feature-based user scenarios, non-crashing failures, and crashing bugs. Additionally, we explore the possibility of using R&R tools in conjunction with automated input genera- tion (AIG) tools to automatically record and replay crashing bugs. Our study context includes one industrial and three academic R&R tools, 34 user scenarios from 17 apps, 90 non-crashing failures from 42 Android apps, and 31 crashing bugs from 17 Android apps. Our results illustrate that 17% of user scenarios, 38% of non-crashing failures, and 44% of crashing bugs are not able to be reliably recorded and replayed, with the most prevalent reasons for non-replayability being action interval resolution, incompatibility related to APIs, and limitations in Android tooling. Our findings reveal important research directions for R&R tools to facilitate their practical application and adoption. 
    more » « less
    Free, publicly-accessible full text available April 4, 2026
  2. Free, publicly-accessible full text available September 11, 2025
  3. Impact analysis (IA) is a critical software maintenance task that identifies the effects of a given set of code changes on a larger software project with the intention of avoiding potential adverse effects. IA is a cognitively challenging task that involves reasoning about the abstract relationships between various code constructs. Given its difficulty, researchers have worked to automate IA with approaches that primarily use coupling metrics as a measure of the connectedness of different parts of a software project. Many of these coupling metrics rely on static, dynamic, or evolutionary information and are based on heuristics that tend to be brittle, require expensive execution analysis, or large histories of co-changes to accurately estimate impact sets. In this paper, we introduce a novel IA approach, called ATHENA, that combines a software system's dependence graph information with a conceptual coupling approach that uses advances in deep representation learning for code without the need for change histories and execution information. Previous IA benchmarks are small, containing less than ten software projects, and suffer from tangled commits, making it difficult to measure accurate results. Therefore, we constructed a large-scale IA benchmark, from 25 open-source software projects, that utilizes fine-grained commit information from bug fixes. On this new benchmark, our best performing approach configuration achieves an mRR, mAP, and HIT@10 score of 60.32%, 35.19%, and 81.48%, respectively. Through various ablations and qualitative analyses, we show that ATHENA's novel combination of program dependence graphs and conceptual coupling information leads it to outperform a simpler baseline by 10.34%, 9.55%, and 11.68% with statistical significance. 
    more » « less
    Free, publicly-accessible full text available July 12, 2025
  4. Often, the first step in managing bug reports is related to triaging a bug to the appropriate developer who is best suited to understand, localize, and fix the target bug. Additionally, assigning a given bug to a particular part of a software project can help to expedite the fixing process. However, despite the importance of these activities, they are quite challenging, where days can be spent on the manual triaging process. Past studies have attempted to leverage the limited textual data of bug reports to train text classification models that automate this process -- to varying degrees of success. However, the textual representations and machine learning models used in prior work are limited by their expressiveness, often failing to capture nuanced textual patterns that might otherwise aid in the triaging process. Recently, large, transformer-based, pre-trained neural text representation techniques such as BERT have achieved greater performance in several natural language processing tasks. However, the potential for using these techniques to improve upon prior approaches for automated bug triaging is not well studied or understood. Therefore, in this paper we offer one of the first investigations that fine-tunes transformer-based language models for the task of bug triaging on four open source datasets, spanning a collective 53 years of development history with over 400 developers and over 150 software project components. Our study includes both a quantitative and qualitative analysis of effectiveness. Our findings illustrate that DeBERTa is the most effective technique across the triaging tasks of developer and component assignment, and the measured performance delta is statistically significant compared to other techniques. However, through our qualitative analysis, we also observe that each technique possesses unique abilities best suited to certain types of bug reports. 
    more » « less
  5. Prior work has developed numerous systems that test the security and safety of smart homes. For these systems to be applicable in practice, it is necessary to test them with realistic scenarios that represent the use of the smart home, i.e., home automation, in the wild. This demo paper presents the technical details and usage of Helion, a system that uses n-gram language modeling to learn the regularities in user-driven programs, i.e., routines developed for the smart home, and predicts natural scenarios of home automation, i.e., event sequences that reflect realistic home automation usage. We demonstrate the HelionHA platform, developed by integrating Helion with the popular Home Assistant smart home platform. HelionHA allows an end-to-end exploration of Helion’s scenarios by executing them as test cases with real and virtual smart home devices. 
    more » « less
  6. One of the most important tasks related to managing bug reports is localizing the fault so that a fix can be applied. As such, prior work has aimed to automate this task of bug localization by formulating it as an information retrieval problem, where potentially buggy files are retrieved and ranked according to their textual similarity with a given bug report. However, there is often a notable semantic gap between the information contained in bug reports and identifiers or natural language contained within source code files. For user-facing software, there is currently a key source of information that could aid in bug localization, but has not been thoroughly investigated - information from the GUI. We investigate the hypothesis that, for end user-facing applications, connecting information in a bug report with information from the GUI, and using this to aid in retrieving potentially buggy files, can improve upon existing techniques for bug localization. To examine this phenomenon, we conduct a comprehensive empirical study that augments four baseline techniques for bug localization with GUI interaction information from a reproduction scenario to (i) filter out potentially irrelevant files, (ii) boost potentially relevant files, and (iii) reformulate text-retrieval queries. To carry out our study, we source the current largest dataset of fully-localized and reproducible real bugs for Android apps, with corresponding bug reports, consisting of 80 bug reports from 39 popular open-source apps. Our results illustrate that augmenting traditional techniques with GUI information leads to a marked increase in effectiveness across multiple metrics, including a relative increase in Hits@10 of 13-18%. Additionally, through further analysis, we find that our studied augmentations largely complement existing techniques. 
    more » « less