skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moran, Seth C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantitative estimates of magma storage are fundamental to evaluating volcanic dynamics and hazards. Yet our understanding of subvolcanic magmatic plumbing systems and their variability remains limited. There is ongoing debate regarding the ephemerality of shallow magma storage and its volume relative to eruptive output, and so whether an upper-crustal magma body could be a sign of imminent eruption. Here we present seismic imaging of subvolcanic magmatic systems along the Cascade Range arc from systematically modelling the three-dimensional scattered wavefield of teleseismic body waves. This reveals compelling evidence of low-seismic-velocity bodies indicative of partial melt between 5 and 15 km depth beneath most Cascade Range volcanoes. The magma reservoirs beneath these volcanoes vary in depth, size and complexity, but upper-crustal magma bodies are widespread, irrespective of the eruptive flux or time since the last eruption of the associated volcano. This indicates that large volumes of melts can persist at shallow depth throughout eruption cycles beneath large volcanoes. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract Mount St. Helens (MSH) lies in the forearc of the Cascades where conditions should be too cold for volcanism. To better understand thermal conditions and magma pathways beneath MSH, data from a dense broadband array are used to produce high‐resolution tomographic images of the crust and upper mantle. Rayleigh‐wave phase‐velocity maps and three‐dimensional images of shear velocity (Vs), generated from ambient noise and earthquake surface waves, show that west of MSH the middle‐lower crust is anomalously fast (3.95 ± 0.1 km/s), overlying an anomalously slow uppermost mantle (4.0–4.2 km/s). This combination renders the forearc Moho weak to invisible, with crustal velocity variations being a primary cause; fast crust is necessary to explain the absent Moho. Comparison with predicted rock velocities indicates that the fast crust likely consists of gabbros and basalts of the Siletzia terrane, an accreted oceanic plateau. East of MSH where magmatism is abundant, middle‐lower crustVsis low (3.45–3.6 km/s), consistent with hot and potentially partly molten crust of more intermediate to felsic composition. This crust overlies mantle with more typical wave speeds, producing a strong Moho. The sharp boundary in crust and mantleVswithin a few kilometers of the MSH edifice correlates with a sharp boundary from low heat flow in the forearc to high arc heat flow and demonstrates that the crustal terrane boundary here couples with thermal structure to focus lateral melt transport from the lower crust westward to arc volcanoes. 
    more » « less