skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Moreno, Yamir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Determining the key elements of interconnected infrastructure and complex systems is paramount to ensure system functionality and integrity. This work quantifies the dominance of the networks’ nodes in their respective neighborhoods, introducing a centrality metric, DomiRank, that integrates local and global topological information via a tunable parameter. We present an analytical formula and an efficient parallelizable algorithm for DomiRank centrality, making it applicable to massive networks. From the networks’ structure and function perspective, nodes with high values of DomiRank highlight fragile neighborhoods whose integrity and functionality are highly dependent on those dominant nodes. Underscoring this relation between dominance and fragility, we show that DomiRank systematically outperforms other centrality metrics in generating targeted attacks that effectively compromise network structure and disrupt its functionality for synthetic and real-world topologies. Moreover, we show that DomiRank-based attacks inflict more enduring damage in the network, hindering its ability to rebound and, thus, impairing system resilience. DomiRank centrality capitalizes on the competition mechanism embedded in its definition to expose the fragility of networks, paving the way to design strategies to mitigate vulnerability and enhance the resilience of critical infrastructures.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract

    The multilayer network framework has served to describe and uncover a number of novel and unforeseen physical behaviors and regimes in interacting complex systems. However, the majority of existing studies are built on undirected multilayer networks while most complex systems in nature exhibit directed interactions. Here, we propose a framework to analyze diffusive dynamics on multilayer networks consisting of at least one directed layer. We rigorously demonstrate that directionality in multilayer networks can fundamentally change the behavior of diffusive dynamics: from monotonic (in undirected systems) to non-monotonic diffusion with respect to the interlayer coupling strength. Moreover, for certain multilayer network configurations, the directionality can induce a unique superdiffusion regime for intermediate values of the interlayer coupling, wherein the diffusion is even faster than that corresponding to the theoretical limit for undirected systems, i.e. the diffusion in the integrated network obtained from the aggregation of each layer. We theoretically and numerically show that the existence of superdiffusion is fully determined by the directionality of each layer and the topological overlap between layers. We further provide a formulation of multilayer networks displaying superdiffusion. Our results highlight the significance of incorporating the interacting directionality in multilevel networked systems and provide a framework to analyze dynamical processes on interconnected complex systems with directionality.

     
    more » « less