skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multilayer networks with higher-order interaction reveal the impact of collective behavior on epidemic dynamics
The ongoing COVID-19 pandemic has inflicted tremendous economic and societal losses. In the absence of pharmaceutical interventions, the population behavioral response, including situational awareness and adherence to non-pharmaceutical intervention policies, has a significant impact on contagion dynamics. Game-theoretic models have been used to reproduce the concurrent evolution of behavioral responses and disease contagion, and social networks are critical platforms on which behavior imitation between social contacts, even dispersed in distant communities, takes place. Such joint contagion dynamics has not been sufficiently explored, which poses a challenge for policies aimed at containing the infection. In this study, we present a multi-layer network model to study contagion dynamics and behavioral adaptation. It comprises two physical layers that mimic the two solitary communities, and one social layer that encapsulates the social influence of agents from these two communities. Moreover, we adopt high-order interactions in the form of simplicial complexes on the social influence layer to delineate the behavior imitation of individual agents. This model offers a novel platform to articulate the interaction between physically isolated communities and the ensuing coevolution of behavioral change and spreading dynamics. The analytical insights harnessed therefrom provide compelling guidelines on coordinated policy design to enhance the preparedness for future pandemics.  more » « less
Award ID(s):
1927418 2119334 1927425
PAR ID:
10378616
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Chaos, Solitons & Fractals
Date Published:
Journal Name:
Chaos, Solitons & Fractals
Volume:
164
Issue:
C
ISSN:
0960-0779
Page Range / eLocation ID:
112735
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The division of a social group into subgroups with opposing opinions, which we refer to as opinion disparity, is a prevalent phenomenon in society. This phenomenon has been modeled by including mechanisms such as opinion homophily, bounded confidence interactions, and social reinforcement mechanisms. In this paper, we study a complementary mechanism for the formation of opinion disparity based on higher-order interactions, i.e., simultaneous interactions between multiple agents. We present an extension of the planted partition model for uniform hypergraphs as a simple model of community structure, and we consider the hypergraph Susceptible-Infected-Susceptible (SIS) model on a hypergraph with two communities where the binary ideology can spread via links (pairwise interactions) and triangles (three-way interactions). We approximate this contagion process with a mean-field model and find that for strong enough community structure, the two communities can hold very different average opinions. We determine the regimes of structural and infectious parameters for which this opinion disparity can exist, and we find that the existence of these disparities is much more sensitive to the triangle community structure than to the link community structure. We show that the existence and type of opinion disparities are extremely sensitive to differences in the sizes of the two communities. 
    more » « less
  2. null (Ed.)
    Web-based interactions allow agents to coordinate and to take actions (change state) jointly, i.e., to participate in collective action such as a protest, facilitating spread of contagion to large groups within networked populations. In game theoretic contexts, coordination requires that agents share common knowledge about each other. Common knowledge emerges within a group when each member knows the states and the types (preferences) of the other members, and critically, each member knows that everyone else has this information. Hence, these models of common knowledge and coordination on communication networks are fundamentally different from influence-based unilateral contagion models, such as those devised by Granovetter and Centola. Common knowledge arises in many settings in practice, yet there are few operational models that can be used to compute contagion dynamics. Moreover, these models utilize different mechanisms for driving contagion. We evaluate the three mechanisms of a common knowledge model that can represent web-based communication among groups of people on Facebook. We evaluate these mechanisms on five social (media) networks with wide-ranging properties. We demonstrate that different mechanisms can produce widely varying behaviors in terms of the extent of contagion spreading and the speed of contagion transmission. 
    more » « less
  3. null (Ed.)
    Web-based interactions allow agents to coordinate and to take actions (change state) jointly, i.e., to participate in collective ac- tion such as a protest, facilitating spread of contagion to large groups within networked populations. In game theoretic contexts, coordination requires that agents share common knowledge about each other. Common knowledge emerges within a group when each member knows the states and the types (preferences) of the other members, and critically, each member knows that everyone else has this information. Hence, these models of common knowledge and coordination on communication networks are fundamentally different from influence-based unilateral contagion models, such as those devised by Granovetter and Centola. Common knowledge arises in many settings in practice, yet there are few operational models that can be used to compute contagion dynamics. Moreover, these models utilize different mechanisms for driving contagion. We evaluate the three mechanisms of a common knowledge model that can represent web-based communication among groups of people on Facebook. We evaluate these mechanisms on ve social (media) networks with wide-ranging properties.We demonstrate that di erent mechanisms can produce widely varying behaviors in terms of the extent of contagion spreading and the speed of contagion transmission. 
    more » « less
  4. Non-pharmaceutical interventions (NPI) have been proven vital in the fight against the COVID-19 pandemic before the massive rollout of vaccinations. Considering the inherent epistemic-aleatoric uncertainty of parameters, accurate simulation and modeling of the interplay between the NPI and contagion dynamics are critical to the optimal design of intervention policies. We propose a modified SIRD-MPC model that combines a modified stochastic Susceptible-Infected-Recovered-Deceased (SIRD) compartment model with mixed epistemic-aleatoric parameters and Model Predictive Control (MPC), to develop robust NPI control policies to contain the infection of the COVID-19 pandemic with minimum economic impact. The simulation result indicates that our proposed model can significantly decrease the infection rate compared to the practical results under the same initial conditions. 
    more » « less
  5. In this paper, we use modified versions of the SIAR model for epidemics to propose two ways of understanding and quantifying the effect of non-compliance to non-pharmaceutical intervention measures on the spread of an infectious disease. The SIAR model distinguishes between symptomatic infected (I) and asymptomatic infected (A) populations. One modification, which is simpler, assumes a known proportion of the population does not comply with government mandates such as quarantining and social-distancing. In a more sophisticated approach, the modified model treats non-compliant behavior as a social contagion. We theoretically explore different scenarios such as the occurrence of multiple waves of infections. Local and asymptotic analyses for both models are also provided. 
    more » « less