Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 18, 2024
-
Free, publicly-accessible full text available January 1, 2024
-
Abstract The information content of atomic-resolution scanning transmission electron microscopy (STEM) images can often be reduced to a handful of parameters describing each atomic column, chief among which is the column position. Neural networks (NNs) are high performance, computationally efficient methods to automatically locate atomic columns in images, which has led to a profusion of NN models and associated training datasets. We have developed a benchmark dataset of simulated and experimental STEM images and used it to evaluate the performance of two sets of recent NN models for atom location in STEM images. Both models exhibit high performance for images of varying quality from several different crystal lattices. However, there are important differences in performance as a function of image quality, and both models perform poorly for images outside the training data, such as interfaces with large difference in background intensity. Both the benchmark dataset and the models are available using the Foundry service for dissemination, discovery, and reuse of machine learning models.more » « lessFree, publicly-accessible full text available December 23, 2023
-
Short-timescale atomic rearrangements are fundamental to the kinetics of glasses and frequently dominated by one atom moving significantly (a rearrangement), while others relax only modestly. The rates and directions of such rearrangements (or hops) are dominated by the distributions of activation barriers ( E act ) for rearrangement for a single atom and how those distributions vary across the atoms in the system. We have used molecular dynamics simulations of Cu 50 Zr 50 metallic glass below T g in an isoconfigurational ensemble to catalog the ensemble of rearrangements from thousands of sites. The majority of atoms are strongly caged by their neighbors, but a tiny fraction has a very high propensity for rearrangement, which leads to a power-law variation in the cage-breaking probability for the atoms in the model. In addition, atoms generally have multiple accessible rearrangement vectors, each with its own E act . However, atoms with lower E act (or higher rearrangement rates) generally explored fewer possible rearrangement vectors, as the low E act path is explored far more than others. We discuss how our results influence future modeling efforts to predict the rearrangement vector of a hopping atom.more » « less
-
Free, publicly-accessible full text available January 1, 2024
-
Abstract Transition metal dichalcogenides (TMDs), especially in two-dimensional (2D) form, exhibit many properties desirable for device applications. However, device performance can be hindered by the presence of defects. Here, we combine state of the art experimental and computational approaches to determine formation energies and charge transition levels of defects in bulk and 2D MX2(M = Mo or W; X = S, Se, or Te). We perform deep level transient spectroscopy (DLTS) measurements of bulk TMDs. Simultaneously, we calculate formation energies and defect levels of all native point defects, which enable identification of levels observed in DLTS and extend our calculations to vacancies in 2D TMDs, for which DLTS is challenging. We find that reduction of dimensionality of TMDs to 2D has a significant impact on defect properties. This finding may explain differences in optical properties of 2D TMDs synthesized with different methods and lays foundation for future developments of more efficient TMD-based devices.