skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moridi, Atieh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2025
  2. Free, publicly-accessible full text available February 1, 2026
  3. Abstract Controlling microstructure in fusion-based metal additive manufacturing (AM) remains a significant challenge due to the many parameters that directly impact solidification condition. Multiprincipal element alloys (MPEAs), also known as high entropy alloys, offer a vast compositional space to design for microstructural engineering due to their chemical complexity and exceptional properties. Here, we use the FeMnCoCr system as a model platform for exploring alloy design in MPEAs for AM. By exploiting the decreasing stability of the face-centered cubic phase with increasing Mn content, we achieve notable grain refinement and breakdown of epitaxial columnar grain growth. We employ a multifaceted approach encompassing thermodynamic modeling, operando synchrotron X-ray diffraction, multiscale microstructural characterization, and mechanical testing to gain insight into the solidification physics and its ramifications on the resulting microstructure of FeMnCoCr MPEAs. This work aims toward tailoring desirable grain sizes and morphology through targeted manipulation of phase stability, thereby advancing microstructure control in AM applications. 
    more » « less
  4. Free, publicly-accessible full text available August 1, 2025
  5. Abstract Dynamic solidification behavior during metal additive manufacturing directly influences the as-built microstructure, defects, and mechanical properties of printed parts. How the formation of these features is driven by temperature variation (e.g., thermal gradient magnitude and solidification front velocity) has been studied extensively in metal additive manufacturing, with synchrotron x-ray imaging becoming a critical tool to monitor these processes. Here, we extend these efforts to monitoring full thermomechanical deformation during solidification through the use of operando x-ray diffraction during laser melting. With operando diffraction, we analyze thermomechanical deformation modes such as torsion, bending, fragmentation, assimilation, oscillation, and interdendritic growth. Understanding such phenomena can aid the optimization of printing strategies to obtain specific microstructural features, including localized misorientations, dislocation substructure, and grain boundary character. The interpretation of operando diffraction results is supported by post-mortem electron backscatter diffraction analyses. 
    more » « less