skip to main content

Search for: All records

Creators/Authors contains: "Moroi, Sayoko E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding aqueous outflow resistance at the level of aqueous veins has been a challenge to the management of glaucoma. This study investigated resolving the anatomies of aqueous veins and the textures of surrounding sclera using photoacoustic microscopy (PAM). A dual wavelength PAM system was established and validated using imaging phantoms, porcine and human globes perfused with an optical contrast agentex vivo. The system shows lateral resolution of 8.23 µm and 4.70 µm at 1200 nm and 532 nm, respectively, and an axial resolution of 27.6 µm. The system is able to separately distinguish the aqueous veins and the sclera with high contrast in full circumference of the porcine and human globes.

    more » « less
  2. Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in developed countries. Identifying patients at high risk of progression to late AMD, the sight-threatening stage, is critical for clinical actions, including medical interventions and timely monitoring. Recently, deep-learning-based models have been developed and achieved superior performance for late AMD pre- diction. However, most existing methods are limited to the color fundus photography (CFP) from the last ophthalmic visit and do not include the longitudinal CFP history and AMD progression during the previous years’ visits. Patients in different AMD subphenotypes might have various speeds of progression in different stages of AMD disease. Capturing the progression information during the previous years’ visits might be useful for the prediction of AMD pro- gression. In this work, we propose a Contrastive-Attention-based Time-aware Long Short-Term Memory network (CAT-LSTM) to predict AMD progression. First, we adopt a convolutional neural network (CNN) model with a contrastive attention module (CA) to extract abnormal features from CFPs. Then we utilize a time-aware LSTM (T-LSTM) to model the patients’ history and consider the AMD progression information. The combination of disease pro- gression, genotype information, demographics, and CFP features are sent to T-LSTM. Moreover, we leverage an auto-encoder to represent temporal CFP sequences as fixed-size vectors and adopt k-means to cluster them into subphenotypes. We evaluate the pro- posed model based on real-world datasets, and the results show that the proposed model could achieve 0.925 on area under the receiver operating characteristic (AUROC) for 5-year late-AMD prediction and outperforms the state-of-the-art methods by more than 3%, which demonstrates the effectiveness of the proposed CAT-LSTM. After analyzing patient representation learned by an auto-encoder, we identify 3 novel subphenotypes of AMD patients with different characteristics and progression rates to late AMD, paving the way for improved personalization of AMD management. The code of CAT-LSTM can be found at GitHub . 
    more » « less
  3. Abstract A method motivated by the eye’s aqueous veins is described for the imaging and strain calculation within soft biological tissues. A challenge to the investigation of the biomechanics of the aqueous vein—perilimbal sclera tissue complex is resolution of tissue deformations as a function of intraocular pressure and the subsequent calculation of strain (a normalized measure of deformation). The method involves perfusion of the eye with a contrast agent during conduction of non-invasive, optical resolution photoacoustic microscopy. This imaging technique permits three-dimensional displacement measurements of tracked points on the inner walls of the veins which are used in a finite element model to determine the corresponding strains. The methods are validated against two standard strain measurement methods. Representative porcine globe perfusion experiments are presented that demonstrate the power of the method to determine complex strain fields in the veins dependent on intraocular pressure as well as vein anatomy. In these cases, veins are observed to move radially outward during increases in intraocular pressure and to possess significant spatial strain variation, possibly influenced by their branching patterns. To the authors’ knowledge, these are the only such quantitative, data driven, calculations of the aqueous vein strains available in the open literature. 
    more » « less
  4. null (Ed.)