- Award ID(s):
- 1760291
- Publication Date:
- NSF-PAR ID:
- 10302556
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The retinal tissue is highly metabolically active and is responsible for translating the visual stimuli into electrical signals to be delivered to the brain. A complex vascular structure ensures an adequate supply of blood and oxygen, which is essential for the function and survival of the retinal tissue. To date, a complete understanding of the configuration of the retinal vascular structures is still lacking. Optical coherence tomography angiography has made available a huge amount of imaging data regarding the main retinal capillary plexuses, namely the superficial capillary plexuses (SCP), intermediate capillary plexuses (ICP) and deep capillary plexuses (DCP). However, the interpretation of these data is still controversial. In particular, the question of whether the three capillary plexuses are connected in series or in parallel remains a matter of debate. In this work, we address this question by utilizing a multi-scale/multi-physics mathematical model to quantify the impact of the two hypothesized vascular configurations on retinal hemodynamics and oxygenation. The response to central retinal vein occlusion (CRVO) and intraocular pressure (IOP) elevation is also simulated depending on whether the capillary plexuses are connected in series or in parallel. The simulation results show the following: (i) in the in series configuration, themore »
-
Abstract Hydrothermal quartz veins from the Butte deposit display euhedral and mottled cathodoluminescent (CL) textures that reflect the growth and deformation history of quartz crystals. A CL-euhedral texture consists of oscillatory dark-light zonations that record primary precipitation from an aqueous fluid. The origin of a CL-mottled texture, which consists of irregularly distributed dark and light portions, is less clear. Previous work showed that in some veins, CL-euhedral and CL-mottled crystals coexist, but the processes leading to their formation and coexistence were unknown. We find that CL-mottled crystals occur predominantly along the wall rock fracture surface and in vein centers and that CL-euhedral cockscomb quartz protrudes from the mottled layers along the wall rock. We infer that the mottled crystals formed by strain-induced recrystallization that was preferentially accommodated by the rheologically weaker layers of noncockscomb quartz because cockscomb crystals are in hard glide orientations relative to adjacent noncockscomb layers. During strain, crystals in noncockscomb layers that are not initially susceptible to slip can rotate in their deforming matrix until they deform plastically. Some of the CL-mottled crystals exhibit a relict CL-euhedral texture (“ghost bands”) whereby bright bands have been blurred and deformed owing to Ti redistribution facilitated by grain boundary migration.more »
-
Altitude affects intraocular pressure (IOP); however, the underlying mechanisms involved and its relationship with ocular hemodynamics remain unknown. Herein, a validated mathematical modeling approach was used for a physiology-enhanced (pe-) analysis of the Mont Blanc study (MBS), estimating the effects of altitude on IOP, blood pressure (BP), and retinal hemodynamics. In the MBS, IOP and BP were measured in 33 healthy volunteers at 77 and 3466 m above sea level. Pe-retinal hemodynamics analysis predicted a statistically significant increase (p < 0.001) in the model predicted blood flow and pressure within the retinal vasculature following increases in systemic BP with altitude measured in the MBS. Decreased IOP with altitude led to a non-monotonic behavior of the model predicted retinal vascular resistances, with significant decreases in the resistance of the central retinal artery (p < 0.001) and retinal venules (p = 0.003) and a non-significant increase in the resistance in the central retinal vein (p = 0.253). Pe-aqueous humor analysis showed that a decrease in osmotic pressure difference (OPD) may underlie the difference in IOP measured at different altitudes in the MBS. Our analysis suggests that venules bear the significant portion of the IOP pressure load within the ocular vasculature, and thatmore »
-
Impaired wound healing is a significant financial and medical burden. The synthesis and deposition of extracellular matrix (ECM) in a new wound is a dynamic process that is constantly changing and adapting to the biochemical and biomechanical signaling from the extracellular microenvironments of the wound. This drives either a regenerative or fibrotic and scar-forming healing outcome. Disruptions in ECM deposition, structure, and composition lead to impaired healing in diseased states, such as in diabetes. Valid measures of the principal determinants of successful ECM deposition and wound healing include lack of bacterial contamination, good tissue perfusion, and reduced mechanical injury and strain. These measures are used by wound-care providers to intervene upon the healing wound to steer healing toward a more functional phenotype with improved structural integrity and healing outcomes and to prevent adverse wound developments. In this review, we discuss bioengineering advances in 1) non-invasive detection of biologic and physiologic factors of the healing wound, 2) visualizing and modeling the ECM, and 3) computational tools that efficiently evaluate the complex data acquired from the wounds based on basic science, preclinical, translational and clinical studies, that would allow us to prognosticate healing outcomes and intervene effectively. We focus on bioelectronics andmore »
-
The quantification of strain in three-dimensions is a powerful tool for structural investigations, allowing for the direct consideration of the localization and delocalization of deformation in space, and potentially, in time. Furthermore, characterization of the distribution of strain in three-dimensions may yield information concerning large-scale kinematics that may not be obtained through the traditional use of asymmetric fabrics. In this contribution, we present a streamlined methodology for the calculation of three-dimensional strain using objective approaches that allow for consideration of error assessment. This approach begins with the collection of suitable samples for strain analysis following either the Rf/ϕ or normalized Fry techniques. Samples are cut along three mutually perpendicular orientations using a set of jigs designed for use in a large oil saw. Cut faces are polished and scanned in high resolution. Scanned images are processed following a standard convention. The boundaries of objects are outlined as “Regions Of Interest” in the open-source program ImageJ and saved. A script reads the saved files of object outlines and statistically fits an ellipse to each digitized object. The parameters of fitted objects are then extracted and saved. Two-dimensional strain analyses are completed following the normalized Fry method or the Rf/ϕ technique followingmore »