skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Morton, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Despite striking global change, management to ensure healthy landscapes and sustained natural resources has tended to set objectives on the basis of the historical range of variability in stationary ecosystems. Many social–ecological systems are moving into novel conditions that can result in ecological transformation. We present four foundations to enable a transition to future-oriented conservation and management that increases capacity to manage change. The foundations are to identify plausible social–ecological trajectories, to apply upstream and deliberate engagement and decision-making with stakeholders, to formulate management pathways to desired futures, and to consider a portfolio approach to manage risk and account for multiple preferences across space and time. We use the Kenai National Wildlife Refuge in Alaska as a case study to illustrate how the four foundations address common land management challenges for navigating transformation and deciding when, where, and how to resist, accept, or direct social–ecological change. 
    more » « less
  2. null (Ed.)
  3. The geological record encodes the relationship between climate and atmospheric carbon dioxide (CO2) over long and short timescales, as well as potential drivers of evolutionary transitions. However, reconstructing CO2beyond direct measurements requires the use of paleoproxies and herein lies the challenge, as proxies differ in their assumptions, degree of understanding, and even reconstructed values. In this study, we critically evaluated, categorized, and integrated available proxies to create a high-fidelity and transparently constructed atmospheric CO2record spanning the past 66 million years. This newly constructed record provides clearer evidence for higher Earth system sensitivity in the past and for the role of CO2thresholds in biological and cryosphere evolution. 
    more » « less