skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Management Foundations for Navigating Ecological Transformation by Resisting, Accepting, or Directing Social–Ecological Change
Abstract Despite striking global change, management to ensure healthy landscapes and sustained natural resources has tended to set objectives on the basis of the historical range of variability in stationary ecosystems. Many social–ecological systems are moving into novel conditions that can result in ecological transformation. We present four foundations to enable a transition to future-oriented conservation and management that increases capacity to manage change. The foundations are to identify plausible social–ecological trajectories, to apply upstream and deliberate engagement and decision-making with stakeholders, to formulate management pathways to desired futures, and to consider a portfolio approach to manage risk and account for multiple preferences across space and time. We use the Kenai National Wildlife Refuge in Alaska as a case study to illustrate how the four foundations address common land management challenges for navigating transformation and deciding when, where, and how to resist, accept, or direct social–ecological change.  more » « less
Award ID(s):
1636476
PAR ID:
10313970
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
BioScience
Volume:
72
Issue:
1
ISSN:
0006-3568
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ecological corridors are one of the best, and possibly only viable, management tools to maintain biodiversity at large scales and to allow species, and ecological processes, to track climate change. This document has been assembled as a summary of the best available information about managing these systems. Our aim with this paper is to provide managers with a convenient guidance document and tool to assist in applying scientific management principles to management of corridors. We do not cover issues related to corridor design or political buy in, but focus on how a corridor should be managed once it has been established. The first part of our paper outlines the history and value of ecological corridors. We next describe our methodologies for developing this guidance document. We then summarize the information about the impacts of linear features on corridors and strategies for dealing with them—specifically, we focus on the effects of roads, canals, security fences, and transmission lines. Following the description of effects, we provide a summary of the best practices for managing the impacts of linear barriers. Globally, many corridors are established in the flood plains of stream and rivers and occur in riparian areas associated with surface waters. Therefore, we next provide guidance on how to manage corridors that occur in riparian areas. We then segue into corridors and the urban/suburban environment, and summarize strategies for dealing with urban development within corridors. The final major anthropic land use that may affect corridor management is cultivation and grazing agriculture. We end this review by identifying gaps in knowledge pertaining to how best to manage corridors. 
    more » « less
  2. null (Ed.)
    Marine area-based conservation measures including no-take zones (areas with no fishing allowed) are often designed through lengthy processes that aim to optimize for ecological and social objectives. Their (semi) permanence generates high stakes in what seems like a one-shot game. In this paper, we theoretically and empirically explore a model of short-term area-based conservation that prioritizes adaptive co-management: temporary areas closed to fishing, designed by the fishers they affect, approved by the government, and adapted every 5 years. In this model, no-take zones are adapted through learning and trust-building between fishers and government fisheries scientists. We use integrated social-ecological theory and a case study of a network of such fisheries closures (“fishing refugia”) in northwest Mexico to hypothesize a feedback loop between trust, design, and ecological outcomes. We argue that, with temporary and adaptive area-based management, social and ecological outcomes can be mutually reinforcing as long as initial designs are ecologically “good enough” and supported in the social-ecological context. This type of adaptive management also has the potential to adapt to climate change and other social-ecological changes. This feedback loop also predicts the dangerous possibility that low trust among stakeholders may lead to poor design, lack of ecological benefits, eroding confidence in the tool’s capacity, shrinking size, and even lower likelihood of social-ecological benefits. In our case, however, this did not occur, despite poor ecological design of some areas, likely due to buffering by social network effects and alternative benefits. We discuss both the potential and the danger of temporary area-based conservation measures as a learning tool for adaptive co-management and commoning. 
    more » « less
  3. Socio-ecological models combine ecological systems with human social dynamics in order to better understand human interactions with the environment. To model human behavior, replicator dynamics can be used to model how societal influence and financial costs can change opinions about resource extraction. Previous research on replicator dynamics has shown how evolving opinions on conservation can change how humans interact with their environment and therefore change population dynamics of the harvested species. However, social-ecological models often assume that human societies are homogeneous with no social structure. Building on previous work on social-ecological models, we develop a two-patch socio-ecological model with social hierarchy in order to study the interactions between spatial dynamics and social inequity. We found that fish movement between patches is a major driver of model dynamics, especially when the two patches exhibit different social equality and fishing practices. Further, we found that the societal influence between groups of harvesters was essential to ensuring stable fishery dynamics. Next, we developed a case study of two independently managed fisheries that were connected by fish movement where one human group fishes sustainably while another was over-harvests, resulting in a fishery collapse of both patches. We also found that because in this model, the influence of one human patch on another only communicates the amount of each catch and no fishing strategies were employed, increased social influence decreased the sustainability of the fishery. The findings of this study indicate the importance of including spatial components to socio- ecological models and highlights the importance of understanding species’ movements when making conservation decisions. Further, we demonstrate how incorporating fishing methods from outside sources can result in higher stability of the harvested population, demonstrating the need for effective communication across management regimes. 
    more » « less
  4. Abstract Traditional infrastructure adaptation to extreme weather events (and now climate change) has typically been techno‐centric and heavily grounded in robustness—the capacity to prevent or minimize disruptions via a risk‐based approach that emphasizes control, armoring, and strengthening (e.g., raising the height of levees). However, climate and nonclimate challenges facing infrastructure are not purely technological. Ecological and social systems also warrant consideration to manage issues of overconfidence, inflexibility, interdependence, and resource utilization—among others. As a result, techno‐centric adaptation strategies can result in unwanted tradeoffs, unintended consequences, and underaddressed vulnerabilities. Techno‐centric strategies thatlock‐intoday's infrastructure systems to vulnerable future design, management, and regulatory practices may be particularly problematic by exacerbating these ecological and social issues rather than ameliorating them. Given these challenges, we develop a conceptual model and infrastructure adaptation case studies to argue the following: (1) infrastructure systems are not simply technological and should be understood as complex and interconnected social, ecological, and technological systems (SETSs); (2) infrastructure challenges, like lock‐in, stem from SETS interactions that are often overlooked and underappreciated; (3) framing infrastructure with aSETS lenscan help identify and prevent maladaptive issues like lock‐in; and (4) a SETS lens can also highlight effective infrastructure adaptation strategies that may not traditionally be considered. Ultimately, we find that treating infrastructure as SETS shows promise for increasing the adaptive capacity of infrastructure systems by highlighting how lock‐in and vulnerabilities evolve and how multidisciplinary strategies can be deployed to address these challenges by broadening the options for adaptation. 
    more » « less
  5. The implications of cumulative land-use decisions and shifting climate on forests, require us to integrate our understanding of ecosystems, markets, policy, and resource management into a social-ecological system. Humans play a central role in macrosystem dynamics, which complicates ecological theories that do not explicitly include human interactions. These dynamics also impact ecological services and related markets, which challenges economic theory. Here, we use two forest macroscale management initiatives to develop a theoretical understanding of how management interacts with ecological functions and services at these scales and how the multiple large-scale management goals work either in consort or conflict with other forest functions and services. We suggest that calling upon theories developed for organismal ecology, ecosystem ecology, and ecological economics adds to our understanding of social-ecological macrosystems. To initiate progress, we propose future research questions to add rigor to macrosystem-scale studies: (1) What are the ecosystem functions that operate at macroscales, their necessary structural components, and how do we observe them? (2) How do systems at one scale respond if altered at another scale? (3) How do we both effectively measure these components and interactions, and communicate that information in a meaningful manner for policy and management across different scales? 
    more » « less