- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0004000000000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Mosheiff, Jonathan (4)
-
Wootters, Mary (4)
-
Resch, Nicolas (3)
-
Silas, Shashwat (3)
-
Guruswami, Venkatesan (2)
-
Doron, Dean (1)
-
Li, Ray (1)
-
Ron-Zewi, Noga (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
null (2)
-
Kumar, Amit (1)
-
Lee, James R. (1)
-
Ron-Zewi, Noga (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kumar, Amit; Ron-Zewi, Noga (Ed.)The Gilbert-Varshamov (GV) bound is a classical existential result in coding theory. It implies that a random linear binary code of rate ε² has relative distance at least 1/2 - O(ε) with high probability. However, it is a major challenge to construct explicit codes with similar parameters. One hope to derandomize the Gilbert-Varshamov construction is with code concatenation: We begin with a (hopefully explicit) outer code 𝒞_out over a large alphabet, and concatenate that with a small binary random linear code 𝒞_in. It is known that when we use independent small codes for each coordinate, then the result lies on the GV bound with high probability, but this still uses a lot of randomness. In this paper, we consider the question of whether code concatenation with a single random linear inner code 𝒞_in can lie on the GV bound; and if so what conditions on 𝒞_out are sufficient for this. We show that first, there do exist linear outer codes 𝒞_out that are "good" for concatenation in this sense (in fact, most linear codes codes are good). We also provide two sufficient conditions for 𝒞_out, so that if 𝒞_out satisfies these, 𝒞_out∘𝒞_in will likely lie on the GV bound. We hope that these conditions may inspire future work towards constructing explicit codes 𝒞_out.more » « less
-
Guruswami, Venkatesan; Mosheiff, Jonathan; Resch, Nicolas; Silas, Shashwat; Wootters, Mary (, Leibniz international proceedings in informatics)Lee, James R. (Ed.)
-
Mosheiff, Jonathan; Resch, Nicolas; Ron-Zewi, Noga; Silas, Shashwat; Wootters, Mary (, Foundations of Computer Science (FOCS 2020))null (Ed.)
-
Guruswami, Venkatesan; Li, Ray; Mosheiff, Jonathan; Resch, Nicolas; Silas, Shashwat; Wootters, Mary (, Leibniz international proceedings in informatics)null (Ed.)