skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Motley, Cadence"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Advanced Robotics and Automation (ARA) Lab has engineered its next-generation robot for steel bridge inspection. This particular design is specialized for its particularly high strength adhesion force and high maneuverability. The robot can utilize various steering configurations such as Ackermann, synchronous and static point steering while navigating steel structures and adhering to cylindrical members. The adhesion system creates a comprehensive platform for adding extra sensing equipment by the user and will serve as a basis for future works. This paper will discuss in detail the design work done to ensure that the proposed robot would function as intended before we made it and show how the capabilities we engineered the proposed robot have made it a step forward for the steel inspection industry. 
    more » « less
  2. This paper presents a new, robust and reliable robot capable of carrying heavy equipment loads without sacrificing mobility that can improve the safety and detail of steel inspections in difficult access areas. In addition, the robot functions with an embedded NORTEC 600, eddy current sensor, and a GoPro camera that allows it to conduct nondestructive evaluation and collect high-resolution imagery data of steel structures. The data is processed into a heatmap for quick and easy interpretation by the user. In order to verify the robot’s designed capabilities, a set of mechanical analyses were performed to quantify the designed robot’s limits and failure mechanics. The application of our robot would increase the safety of an inspector by reducing the frequency they would need to hang underneath a bridge or travel along a narrow section. Demonstration of the robot deployments can be seen in this link: https://youtu.be/8d78d7CWXYk 
    more » « less
  3. The advanced robotic and automation (ARA) lab has developed and successfully implemented a design inspired by many of the various cutting edge steel inspection robots to date. The combination of these robots concepts into a unified design came with its own set of challenges since the parameters for these features sometimes conflicted. An extensive amount of design and analysis work was performed by the ARA lab in order to find a carefully tuned balance between the implemented features on the ARA robot and general functionality. Having successfully managed to implement this conglomerate of features represents a breakthrough to the industry of steel inspection robots as the ARA lab robot is capable of traversing most complex geometries found on steel structures while still maintaining its ability to efficiently travel along these structures; a feat yet to be done until now. 
    more » « less