skip to main content


Title: A Robust and Reliable Climbing Robot for Steel Structure Inspection
This paper presents a new, robust and reliable robot capable of carrying heavy equipment loads without sacrificing mobility that can improve the safety and detail of steel inspections in difficult access areas. In addition, the robot functions with an embedded NORTEC 600, eddy current sensor, and a GoPro camera that allows it to conduct nondestructive evaluation and collect high-resolution imagery data of steel structures. The data is processed into a heatmap for quick and easy interpretation by the user. In order to verify the robot’s designed capabilities, a set of mechanical analyses were performed to quantify the designed robot’s limits and failure mechanics. The application of our robot would increase the safety of an inspector by reducing the frequency they would need to hang underneath a bridge or travel along a narrow section. Demonstration of the robot deployments can be seen in this link: https://youtu.be/8d78d7CWXYk  more » « less
Award ID(s):
1846513 1919127
NSF-PAR ID:
10318772
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2022 IEEE/SICE International Symposium on System Integration (SII)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robots and humans closely working together within dynamic environments must be able to continuously look ahead and identify potential collisions within their ever-changing environment. To enable the robot to act upon such situational awareness, its controller requires an iterative collision detection capability that will allow for computationally efficient Proactive Adaptive Collaboration Intelligence (PACI) to ensure safe interactions. In this paper, an algorithm is developed to evaluate a robot’s trajectory, evaluate the dynamic environment that the robot operates in, and predict collisions between the robot and dynamic obstacles in its environment. This algorithm takes as input the joint motion data of predefined robot execution plans and constructs a sweep of the robot’s instantaneous poses throughout time. The sweep models the trajectory as a point cloud containing all locations occupied by the robot and the time at which they will be occupied. To reduce the computational burden, Coons patches are leveraged to approximate the robot’s instantaneous poses. In parallel, the algorithm creates a similar sweep to model any human(s) and other obstacles being tracked in the operating environment. Overlaying temporal mapping of the sweeps reveals anticipated collisions that will occur if the robot-human do not proactively modify their motion. The algorithm is designed to feed into a segmentation and switching logic framework and provide real-time proactive-n-reactive behavior for different levels of human-robot interactions, while maintaining safety and production efficiency. To evaluate the predictive collision detection approach, multiple test cases are presented to quantify the computational speed and accuracy in predicting collisions. 
    more » « less
  2. Wagner, A.R. ; null (Ed.)
    Collaborative robots that provide anticipatory assistance are able to help people complete tasks more quickly. As anticipatory assistance is provided before help is explicitly requested, there is a chance that this action itself will influence the person’s future decisions in the task. In this work, we investigate whether a robot’s anticipatory assistance can drive people to make choices different from those they would otherwise make. Such a study requires measuring intent, which itself could modify intent, resulting in an observer paradox. To combat this, we carefully designed an experiment to avoid this effect. We considered several mitigations such as the careful choice of which human behavioral signals we use to measure intent and designing unobtrusive ways to obtain these signals. We conducted a user study (𝑁=99) in which participants completed a collaborative object retrieval task: users selected an object and a robot arm retrieved it for them. The robot predicted the user’s object selection from eye gaze in advance of their explicit selection, and then provided either collaborative anticipation (moving toward the predicted object), adversarial anticipation (moving away from the predicted object), or no anticipation (no movement, control condition). We found trends and participant comments suggesting people’s decision making changes in the presence of a robot anticipatory motion and this change differs depending on the robot’s anticipation strategy. 
    more » « less
  3. null (Ed.)
    To enable safe and effective human-robot collaboration (HRC) in smart manufacturing, seamless integration of sensing, cognition and prediction into the robot controller is critical for real-time awareness, response and communication inside a heterogeneous environment (robots, humans, equipment). The specific research objective is to provide the robot Proactive Adaptive Collaboration Intelligence (PACI) and switching logic within its control architecture in order to give the robot the ability to optimally and dynamically adapt its motions, given a priori knowledge and predefined execution plans for its assigned tasks. The challenge lies in augmenting the robot’s decision-making process to have greater situation awareness and to yield smart robot behaviors/reactions when subject to different levels of human-robot interaction, while maintaining safety and production efficiency. Robot reactive behaviors were achieved via cost function-based switching logic activating the best suited high-level controller. The PACI’s underlying segmentation and switching logic framework is demonstrated to yield a high degree of modularity and flexibility. The performance of the developed control structure subjected to different levels of human-robot interactions was validated in a simulated environment. Open-loop commands were sent to the physical e.DO robot to demonstrate how the proposed framework would behave in a real application. 
    more » « less
  4. null (Ed.)
    Abstract To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, seamless integration of sensing, cognition, and prediction into the robot controller is critical for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The specific research objective is to provide the robot Proactive Adaptive Collaboration Intelligence (PACI) and switching logic within its control architecture in order to give the robot the ability to optimally and dynamically adapt its motions, given a priori knowledge and predefined execution plans for its assigned tasks. The challenge lies in augmenting the robot’s decision-making process to have greater situation awareness and to yield smart robot behaviors/reactions when subject to different levels of human–robot interaction, while maintaining safety and production efficiency. Robot reactive behaviors were achieved via cost function-based switching logic activating the best suited high-level controller. The PACI’s underlying segmentation and switching logic framework is demonstrated to yield a high degree of modularity and flexibility. The performance of the developed control structure subjected to different levels of human–robot interactions was validated in a simulated environment. Open-loop commands were sent to the physical e.DO robot to demonstrate how the proposed framework would behave in a real application. 
    more » « less
  5. Abstract

    Collaborative robots must simultaneously be safe enough to operate in close proximity to human operators and powerful enough to assist users in industrial tasks such as lifting heavy equipment. The requirement for safety necessitates that collaborative robots are designed with low-powered actuators. However, some industrial tasks may require the robot to have high payload capacity and/or long reach. For collaborative robot designs to be successful, they must find ways of addressing these conflicting design requirements. One promising strategy for navigating this tradeoff is through the use of static balancing mechanisms to offset the robot’s self-weight, thus enabling the selection of low-powered actuators. In this paper, we introduce a novel, two degrees-of-freedom static balancing mechanism based on spring-loaded, wire-wrapped cams. We also present an optimization-based cam design method that guarantees the cams stay convex, ensures the springs stay below their extensions limits, and minimizes sensitivity to unmodeled deviations from the nominal spring constant. Additionally, we present a model of the effect of friction between the wire and the cam. Lastly, we show experimentally that the torque generated by the cam mechanism matches the torque predicted in our modeling approach. Our results also suggest that the effects of wire-cam friction are significant for non-circular cams.

     
    more » « less